Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows Factors Affecting Molecule Motion in Cells

12.10.2010
Using large-scale computer simulations, researchers at the Georgia Institute of Technology have identified the most important factors affecting how molecules move through the crowded environment inside living cells.

The findings suggest that perturbations caused by hydrodynamic interactions – similar to what happens when the wake from a large boat affects smaller boats on a lake – may be the most important factor in this intracellular diffusion.

A detailed understanding of the interactions inside cells – where macromolecules can occupy as much as 40 percent of the available space – could provide important information to the developers of therapeutic drugs and lead to a better understanding of how disease states develop. Ultimately, researchers hope to have a complete simulation of these cellular processes to help them understand a range of biological issues, from metabolism to cell division.

Sponsored by the National Institutes of Health, the research was reported Oct. 11 in the early online edition of the journal Proceedings of the National Academy of Sciences.

“We found that hydrodynamics – perturbation of the solvent with eddies and wakes created by molecules in this crowded environment – may be the dominant effect in intermolecular dynamics within cells,” said Jeffrey Skolnick, director of the Center for the Study of Systems Biology at Georgia Tech. “The correlations created between molecules through this process have a lot of functional consequences for how collections of these molecules interact.”

The motion of macromolecules within cells is normally random, occurring through Brownian motion that causes the molecules to diffuse through the cellular cytoplasm, which has viscosity similar to that of water. Researchers have studied the movement of fluorescent protein molecules injected into E. coli cells, but don’t yet understand the forces affecting that motion. However, the measurements show that the fluorescent molecules move about 15 times more slowly inside the cell than they do in a test tube.

Using simulations that allowed them to adjust the impacts of natural forces, Skolnick and collaborator Tadashi Ando analyzed the activity of 15 different molecules in a portion – just one one-thousandth – of an E. coli cell. By altering those simulated forces in the computer, they attempted to determine what may cause the reduction in diffusion speed.

The most logical reason for that slowed movement is the crowded nature of cells, but Skolnick and Ando found that bumping into other molecules accounted for only a portion of the reduced molecular diffusion.

“If you are in a crowded room and want to walk to the bar, the other people slow you down,” explained Skolnick, who is Georgia Research Alliance eminent scholar in computational systems biology. “In biological processes, if there are a lot of large molecules in the way, these protein molecules can’t move as quickly. But our model showed that this crowding accounted for only about a third of the reduction measured experimentally.”

The researchers also studied the hydrodynamic forces exerted by molecules on one another. These forces are comparable to the way in which the wake of a large boat on a lake affects smaller boats, or how a swimming whale might effect a school of small fish. The interaction causes correlated motion, which was known to be important in the movement of polymers and colloids studied earlier by chemists.

By turning off the other forces at work in their silicon world, the Georgia Tech researchers found that this correlated motion accounted for much more of the diffusion reduction than did the crowding.

“The hydrodynamic interactions create cooperative motion between the molecules,” Skolnick explained. “We see long-lived correlations between the molecules, independent of size, in space and time. This suggests that these correlated motions may be extremely important in the dynamics of molecules.”

The researchers also studied other possible causes for the slow-down but found that repulsion between molecules, variations in molecular shape and “stickiness” between molecules could not account for the dramatic reduction in diffusion rate.

Though the findings are interesting in themselves, their real importance may be in setting the stage for larger studies that would include the thousands of molecules known to be important to cellular operations. Researchers ultimately hope to model everything happening in the cell, including interactions with the cell membrane.

“This is the beginning of what will be a very complicated effort to develop the tools and approaches that will allow us to simulate a sufficiently useful caricature of a cell,” Skolnick said. “From that, we will be able to learn the biological principles at work, and then study some ‘what if’ scenarios.”

Those “what if” questions might one day help drug designers better understand how therapeutic compounds work within cells, for instance, or allow cancer researchers to see how cells change from a healthy state to a disease state.

“It would be great if we could study new drugs in a model set of cells to very quickly see what might be the side-effects and cross interactions to understand how we might minimize these problems,” Skolnick noted. “The nice thing about a computer simulation is that if it is a reasonably faithful caricature, you can ask a lot of questions – and get answers that help you understand what’s going on.”

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: John Toon (404-894-6986)(jtoon@gatech.edu) or Abby Vogel Robinson (abby@innovate.gatech.edu).

Technical Contact: Jeffrey Skolnick (404-407-8975)(skolnick@gatech.edu).

Writer: John Toon

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>