Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows Experiments Underestimate Plant Responses to Climate Change

03.05.2012
Experiments may dramatically underestimate how plants will respond to climate change in the future.

That’s the conclusion of an analysis of 50 plant studies on four continents, published this week in an advance online issue of the journal Nature, which found that shifts in the timing of flowering and leafing in plants due to global warming appear to be much greater than estimated by warming experiments.

“This suggests that predicted ecosystem changes—including continuing advances in the start of spring across much of the globe—may be far greater than current estimates based on data from experiments,” said Elizabeth Wolkovich, an ecologist at the University of British Columbia who led an interdisciplinary team of scientists that conducted the study while she was a postdoctoral fellow at the University of California, San Diego.

“These findings have extensive consequences for predictions of species diversity, ecosystem services and global models of future change,” said Elsa Cleland, an assistant professor of biology at UC San Diego and senior author of the study, which involved 22 institutions in Canada, Sweden, Switzerland, the U.K. and the U.S. “Long-term records appear to be converging on a consistent average response to climate change, but future plant and ecosystem responses to warming may be much higher than previously estimated from experimental data.”

Predicting plant responses to climate change has important consequences for human water supply, pollination of crops and the overall health of ecosystems. Shifts in the timing of annual plant events—which biologists call “phenology”—are some of the most consistent and visible responses to climate change.

Long-term historical records show that many plant species have shifted their leafing and flowering earlier, in step with warming temperatures over recent decades. Because historical records are not available in most locations and climate change may produce temperatures higher than previously recorded, however, ecologists often rely on experiments that warm small field plots to estimate plant responses to temperature and project future conditions.

With support from the National Center for Ecological Analysis and Synthesis, a research center funded by the National Science Foundation, the State of California and the University of California, Santa Barbara, the scientists created new global databases of plant phenology to compare the sensitivity of plants to temperature— that is, how much plants shift their timing of leafing and flowering with warming. These were calculated from experiments and then compared to long-term monitoring records.

Wolkovich and her colleagues found that experiments underpredicted plant phenological responses to temperature by at least fourfold compared to long-term records. Long-term historical records consistently showed that leafing and flowering will advance, on average, 5 to 6 days per degree Celsius—a finding that was strikingly consistent across species and datasets.

“These results are important because we rely heavily on these experiments to predict what will happen to communities and ecosystems in the future,” said Ben Cook, a climatologist at the NASA Goddard Institute for Space Studies and Columbia University, who helped bring together the research team.

Wolkovich said a number of factors could explain this discrepancy—including additional effects of climate change not mirrored by warming experiments, or specific aspects of the experimental design such as the degree of warming. But her team’s analyses found that within the range of temperature increases considered, responses were not noticeably affected by the degree of warming or the number of years the study spanned. Instead, the discrepancy may be driven by exactly how researchers manipulate temperatures and how accurately they measure them.

“Researchers use a variety of methods to increase temperatures in the field—including heating cables in the soil, small greenhouse-like structures and heating above plants,” explains Wolkovich. “We found that plant sensitivities to temperature vary with the design of the experiment, with above plant warming producing consistent advances in flowering.”
Additionally, because the comparison was based on a metric that considered plant responses per degree Celsius of temperature change, experiments that overestimate their temperature increases could underestimate the change in leafing and flowering per degree of warming. The difference in estimated responses from experiments versus long-term records has important consequences for predictions of species diversity, ecosystem services and global models of future change.

“Continuing efforts to improve the design of warming experiments while maintaining and extending long-term historical monitoring will be critical to pinpointing the cause of the mismatch,” said Wolkovich. “These efforts will yield a more accurate picture of future plant communities and ecosystems with continuing climate change.”

The study was funded by the National Science Foundation, the State of California and the University of California, Santa Barbara.

Media Contact

Kim McDonald, 858-534-7572, kmcdonald@ucsd.edu
Elsa Cleland, 858-699-9928, ecleland@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://ucsdnews.ucsd.edu/pressreleases/study_shows_experiments_underestimate_plant_responses_to_climate_change/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>