Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows estrogen works in the brain to keep weight in check

20.10.2011
A recent UT Southwestern Medical Center study found that estrogen regulates energy expenditure, appetite and body weight, while insufficient estrogen receptors in specific parts of the brain may lead to obesity.

"Estrogen has a profound effect on metabolism," said Dr. Deborah Clegg, associate professor of internal medicine and senior author of the study published Oct. 5 in Cell Metabolism. "We hadn't previously thought of sex hormones as being critical regulators of food intake and body weight."

The mouse study is the first to show that estrogen, acting through two hypothalamic neural centers in the brain, keeps female body weight in check by regulating hunger and energy expenditure. Female mice lacking estrogen receptor alpha – a molecule that sends estrogen signals to neurons – in those parts of the brain became obese and developed related diseases, such as diabetes and heart disease.

Similar results were not seen in male mice, although researchers suspect other unknown estrogen receptor sites in the brain play a similar role in regulating metabolism for males as well.

Estrogen receptors are located throughout the body, but researchers found two specific populations of estrogen receptors that appear to regulate energy balance for female mice.

The findings are potentially important for millions of postmenopausal women, many of whom have decided against hormonal replacement therapy. The study could lead to new hormonal replacement therapies in which estrogen is delivered to specific parts of the brain that regulate body weight, thereby avoiding the risks associated with full-body estrogen delivery, such as breast cancer and stroke.

Doctors stopped routinely recommending long-term estrogen therapy for menopausal women in 2002 when a Women's Health Initiative study showed the hormone also led to increased risk of cardiovascular disease.

"The role of estrogen in postmenopausal women continues to remain uncertain," Dr. Clegg said. "Current research is focused on the timing and the type of estrogen supplementation that would be most beneficial to women. Our findings further support a role for estrogens in regulating body weight and energy expenditure, suggesting a benefit of estrogen supplementation in postmenopausal women."

Other UT Southwestern researchers involved in the study included lead author Dr. Yong Xu, a former postdoctoral researcher in Dr. Clegg's lab; Dr. Carol Elias, assistant professor of internal medicine; and Dr. Joel Elmquist, professor of internal medicine.

The research was supported by grants from the National Institutes of Health, the American Heart Association and the American Diabetes Association.

Visit http://www.utsouthwestern.org/nutrition to learn more about clinical services in nutrition at UT Southwestern, including treatments for diabetes, kidney disease and obesity.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Debbie Bolles | EurekAlert!
Further information:
http://www.utsouthwestern.org/nutrition
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>