Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows climate change could affect onset and severity of flu seasons

29.01.2013
The American public can expect to add earlier and more severe flu seasons to the fallout from climate change, according to a research study published online Jan. 28 in PLOS Currents: Influenza.

A team of scientists led by Sherry Towers, research professor in the Mathematical, Computational and Modeling Sciences Center at Arizona State University, studied waves of influenza and climate patterns in the U.S. from the 1997-1998 season to the present.


Research by Arizona State University scientists tracked the number of flu cases by week for the past 16 years. Their studies suggest there is a trend toward earlier and more severe flu seasons with potential link climate change.

Credit: Arizona State University

The team's analysis, which used Centers for Disease Control data, indicates a pattern for both A and B strains: warm winters are usually followed by heavy flu seasons.

"It appears that fewer people contract influenza during warm winters, and this causes a major portion of the population to remain vulnerable into the next season, causing an early and strong emergence," says Towers. "And when a flu season begins exceptionally early, much of the population has not had a chance to get vaccinated, potentially making that flu season even worse."

... more about:
»Climate change »Influenza »flu season

The current flu season, which is still in high gear in parts of the nation, began early and fiercely. It followed a relatively light 2011 season, which saw the lowest peak of flu since tracking efforts went into effect, and coincided with the fourth warmest winter on record. According to previous studies, flu transmission decreases in warm or humid conditions.

If global warming continues, warm winters will become more common, and the impact of flu will likely be more heavily felt, say the study's authors.

Mathematical epidemiologist Gerardo Chowell-Puente, an associate professor in the School of Human Evolution and Social Change in the College of Liberal Arts and Sciences, adds that the findings could inform preparedness efforts following mild winters: "The expedited manufacture and distribution of vaccines and aggressive vaccination programs could significantly diminish the severity of future influenza epidemics."

This study was partially supported by the Multinational Influenza Seasonal Mortality Study, overseen by the National Institutes of Health's Fogarty International Center. Other team members are Rasheed Hameed, Matthew Jastrebski, Maryam Khan, Jonathan Meeks, Anuj Mubayi and George Harris of Northeastern Illinois University. The goal of the overarching study is to better grasp the character and trajectory of influenza in all its forms.

Rebecca Howe | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: Climate change Influenza flu season

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>