Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows How The Brain Responds To Deceptive Advertising

29.02.2012
Several specific regions of our brains are activated in a two-part process when we are exposed to deceptive advertising, according to new research conducted by a North Carolina State University professor. The work opens the door to further research that could help us understand how brain injury and aging may affect our susceptibility to fraud or misleading marketing.

The study utilized functional magnetic resonance imaging (fMRI) to capture images of the brain while study participants were shown a series of print advertisements. The fMRI images allowed researchers to determine how consumers’ brains respond to potentially deceptive advertising. “We did not instruct participants to evaluate the ads. We wanted to mimic the passive exposure to advertising that we all experience every day,” says Dr. Stacy Wood, Langdon Distinguished Professor of Marketing at NC State and co-author of a paper describing the research.


The contrast in these images shows greater precuneus activation for "highly deceptive" than "moderately deceptive" ads.

The contrast in these images shows greater precuneus activation for "highly deceptive" than "moderately deceptive" ads.

Participants were exposed to three pre-tested advertisements that were deemed “highly believable,” “moderately deceptive” or “highly deceptive.” The ads were also pre-tested to ensure that they were for products that consumers found equally interesting and desirable – leaving the degree of deception as the only significant variable.

“We found that people have a two-stage process they go through when confronted with moderately or highly deceptive ads,” Wood says.

During the first stage, researchers saw increased activity in the precuneus – a part of the brain associated with focusing conscious attention. “We found that the more deceptive an advertisement is, the more you are drawn to it,” Wood says, “much as our attention is drawn to potential threats in our environment.” Specifically, in this study, the more deceptive an ad was, the more precuneus activity was observed.

During the second stage, researchers saw more activity in the superior temporal sulcus (STS) and temporoparietal junction (TPJ) regions of the brain. This suggests increased “theory-of-mind” (ToM) reasoning. ToM is a type of processing that allows us to distinguish our wants and needs from those of others, particularly as this applies to intuiting the intentions of other people. In this case, it appears to indicate that participants were trying to determine the truth behind the claims in the potentially deceptive advertisements.

“What’s interesting here is that the moderately deceptive ads cause more activity during this second stage,” Wood says. That may be because highly deceptive ads are screened out more quickly and discarded as not meriting further attention.

Overall, when looking at both stages of brain response, researchers found there was greater brain activation when participants were exposed to moderately deceptive ads. But, if moderately deceptive ads stimulate more brain activity, does that make us more susceptible to the sales pitch in ads that trigger just a pinch of skepticism?

Apparently not. In a follow-up, behavioral component of the study, researchers interfered with the ToM stage, making it more difficult for participants to determine the intention behind the ads. As a result, participants more frequently believed moderately deceptive advertising. This suggests that the second stage is an important step that helps protect consumers by allowing them to better discriminate and screen out deceptive ads.

“Now that we’ve identified these stages of brain response, it may help future researchers identify underlying neural reasons why some populations are more prone to fall prey to deceptive ads,” Wood says. “For example, if these regions of the brain are likely to be affected by aging, it may explain why older adults are more vulnerable to fraud or deceptive advertising. Or how might concussive brain injuries, such as those seen in some sports, affect our long-term discrimination in making good consumer choices?”

The paper, “Suspicious Minds: An fMRI Investigation of How Consumers Perceive Deception in the Marketplace,” was co-authored by Wood, Dr. Adam Craig of USF (lead researcher), Dr. Yuliya Loureiro of Fordham and Dr. Jennifer Vendemia of USC. The paper is published online in the Journal of Marketing Research.

-shipman-

Note to Editors: The study abstract follows.

“Suspicious Minds: An fMRI Investigation of How Consumers Perceive Deception in the Marketplace”

Authors: Adam W. Craig, University of South Florida; Yuliya Komarova Loureiro, Fordham University; Stacy Wood, North Carolina State University; Jennifer M.C. Vendemia, University of South Carolina.

Published: online in Journal of Marketing Research

Abstract: In processing advertisements, consumers must decide what to believe and what is meant to deceive. Here, we use fMRI data to explore consumers’ neural response to product claims with differing levels of perceived deceptiveness. Specifically, we look for brain activation in areas associated with Theory-of-Mind (ToM) reasoning. Our fMRI data provide unique and intriguing evidence identifying two different stages of brain activity: precuneus activation at earlier stages, and superior temporal sulcus and temporo-parietal junction activation at later stages. Additionally, at the earliest stage of processing, increases in affect-oriented activation (amygdala) are associated with advertising claims perceived as more deceptive. Interestingly, across the two stages, we observe disproportionately greater brain activity associated with claims that are moderately deceptive. However, the fMRI data alone is insufficient to understand what this may mean for consumers and marketers. Thus, we conducted a behavioral study to examine whether increased activation across these stages represents a positive “careful discrimination” response to deception or the negative potential for consumers to be misled.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu
http://news.ncsu.edu/releases/wmswooddeceptive/

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>