Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Shows How the Brain Forms Habits

26.10.2010
Most people have habits that guide them through daily life — for example, their path to work in the morning, or their bedtime routine.

The brain patterns that drive this behavior are not well-understood, but a new study from MIT’s McGovern Institute for Brain Research shows that habit formation appears to be an innate ability that is fine-tuned by experience — specifically, the costs and rewards of certain choices.

Neuroscientists led by Institute Professor Ann Graybiel found that untrained monkeys performing a simple visual scanning task gradually developed efficient patterns that allowed them to minimize the time it took to receive their reward.

The task was designed to mimic natural scenarios — a nearly infinite number of choices for the monkeys to make and an unpredictable reward structure. “We wanted to create an environment that would be similar to the world we walk around in every day — an environment where there are lots of choices the animal can make,” says Theresa Desrochers, an MIT graduate student and lead author of a paper describing the work in the Proceedings of the National Academy of Sciences the week of Oct. 25.

The findings not only help reveal how the brain forms habits, but also could shed light on neurological disorders where amplified habit-formation results in highly repetitive behavior, such as Tourette’s syndrome, obsessive-compulsive disorder and schizophrenia, says Graybiel.

Graybiel and Desrochers took an unusual approach to their study. In most behavioral studies of monkeys, the researchers first train the animals to perform a task, then begin experiments. In this case, Graybiel and Desrochers wanted to see if the monkeys could learn a simple visual free-scanning task with no training at all.

The researchers measured the monkeys’ eye movements and brain activity as they looked at a grid of either four or nine dots. In each trial, after a period of time when the monkey just looked around, a different dot was randomly chosen to be “baited,” meaning that the monkey succeeded in the trial when its gaze landed on that dot. After a successful trial ended, the monkey received a food reward.

While the task itself is simple, it is capable of generating a rich variety of behavior, due to the number of choices available to the animals. The monkeys performed such trials about 1,000 times a day, and over several months, they developed ways to look at all of the different dots in sequences that were more and more cost-effective — meaning that they reached the target dot faster.

The changes were gradual: The animals would use one pattern for five to 10 days, then shift to a slightly different pattern. When looking at the entire mass of data, the researchers couldn’t tell what was driving these changes. However, a trial-by-trial analysis revealed that very small variations in the scanning patterns could reduce the overall time to receive the reward, which would then reinforce that behavior and lead the monkey to adopt the new pattern.

“The upshot was that tiny little changes in cost — how far they moved the eyes — seemed to be driving these shifts until they did it as optimally as they could, despite the fact that they had never been instructed,” says Graybiel.

This suggests that primates have an “inborn tendency to maximize reward and minimize cost,” says Graybiel. She and Desrochers believe the same kind of phenomenon, known as reinforcement learning, may also guide human habit formation.

“When you drive to work, it’s never going to take exactly the same amount of time. You might try one different street to avoid a stoplight, or some other subtle variation. At some point, you may completely shift,” says Desrochers.

Desrochers and Graybiel plan to design studies that will test whether humans show the same kind of habit-forming behavior in an eye-scanning task similar to the one the monkeys learned. They also hope to discover which parts of the brain control habit formation. They believe that the basal ganglia, which play a role in learning, and the prefrontal cortex, which is involved in planning, are likely candidates.

Funding: National Eye Institute Grant, the Office of Naval Research Grant, National Defense Science and Engineering Graduate Fellowship, Friends of the McGovern Fellowship and a Sloan Research Fellowship

Source: “Optimal habits can develop spontaneously through sensitivity to local cost” by, Theresa M. Desrochers, Dezhe Z. Jin, Noah D. Goodman, and Ann M. Graybiel. Proceedings of the National Academy of Sciences, 25 October, 2010.

Julie Pryor | Newswise Science News
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>