Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how ancient plants and soil fungi turned the Earth green

03.11.2010
A new breakthrough by scientists at the University of Sheffield has shed light on how the Earth's first plants began to colonise the land over 470 million years ago by forming a partnership with soil fungi.

The research, which was published today (2 November 2010) in Nature Communications, has provided essential missing evidence showing that an ancient plant group worked together with soil-dwelling fungi to 'green' the Earth in the early Palaeozoic era, nearly half a billion years ago.

The research, which also involved experts from the Royal Botanic Gardens, Kew, Imperial College London and the University of Sydney, has provided new insights into our understanding of the evolving dynamic behaviour of the Earth's land plants and fungi.

Scientists have long-suspected that soil fungi formed mutually beneficial relationships with early land plants to play an essential role in assisting their initial colonisation of terrestrial environments. However, until now there has been a lack of evidence demonstrating if and how the earliest ancient land plants, from the early Palaeozoic era (over 470 million years ago), might have cooperated with fungi for mutual benefit.

The team studied a thalloid liverwort plant, which is a member of the most ancient group of land plants that still exists and still shares many of the original features of its ancestors. They used controlled-environment growth rooms to simulate a CO2-rich atmosphere, similar to that of the Palaeozoic era when these plants originated. This environment significantly amplified the benefits of the fungi for the plant's growth and so favoured the early formation of the association between the plant and its fungal partner.

The team found that when the thalloid liverwort was colonised by the fungi, it significantly enhanced photosynthetic carbon uptake, growth and asexual reproduction, factors that had a beneficial impact on plant fitness. The plants grow and reproduce better when colonised by symbiotic fungi because the fungi provide essential soil nutrients. In return, the fungi also benefit by receiving carbon from the plants. The research found that each plant was supporting fungi that had an area of 1-2 times that of a tennis court.

Professor David Beerling, from the Department of Animal and Plant Sciences at the University of Sheffield, said: "By studying these ancient plants we open a window on the past to investigate how the earliest land plants evolved. Our results support the idea that the 'greening' of the Earth was promoted by a symbiosis between plants and fungi. It shows that plants didn't get a toe-hold on land without teaming up with fungi – this has long been suspected, but until now not investigated. It will require us to think again about the crucial role of cooperation between organisms that drove fundamental changes in the ecology of our planet."

Martin Bidartondo from the Jodrell Laboratory at the Royal Botanic Gardens, Kew, said: "Fungi are present in every type of habitat throughout the world and are essential for many plants to grow. It is exciting that we are now beginning to discover the fungi associated with 'lower' plants, and that many more still remain to be investigated."

Notes for Editors: Citation: 'Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants' Claire P. Humphreys , Peter J. Franks , Mark Rees, Martin I. Bidartondo, Jonathan R. Leake & David J. Beerling.

The article will be published online on the Nature Communications' website on 02 November 2010.

Lauren Anderson | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>