Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how ancient plants and soil fungi turned the Earth green

03.11.2010
A new breakthrough by scientists at the University of Sheffield has shed light on how the Earth's first plants began to colonise the land over 470 million years ago by forming a partnership with soil fungi.

The research, which was published today (2 November 2010) in Nature Communications, has provided essential missing evidence showing that an ancient plant group worked together with soil-dwelling fungi to 'green' the Earth in the early Palaeozoic era, nearly half a billion years ago.

The research, which also involved experts from the Royal Botanic Gardens, Kew, Imperial College London and the University of Sydney, has provided new insights into our understanding of the evolving dynamic behaviour of the Earth's land plants and fungi.

Scientists have long-suspected that soil fungi formed mutually beneficial relationships with early land plants to play an essential role in assisting their initial colonisation of terrestrial environments. However, until now there has been a lack of evidence demonstrating if and how the earliest ancient land plants, from the early Palaeozoic era (over 470 million years ago), might have cooperated with fungi for mutual benefit.

The team studied a thalloid liverwort plant, which is a member of the most ancient group of land plants that still exists and still shares many of the original features of its ancestors. They used controlled-environment growth rooms to simulate a CO2-rich atmosphere, similar to that of the Palaeozoic era when these plants originated. This environment significantly amplified the benefits of the fungi for the plant's growth and so favoured the early formation of the association between the plant and its fungal partner.

The team found that when the thalloid liverwort was colonised by the fungi, it significantly enhanced photosynthetic carbon uptake, growth and asexual reproduction, factors that had a beneficial impact on plant fitness. The plants grow and reproduce better when colonised by symbiotic fungi because the fungi provide essential soil nutrients. In return, the fungi also benefit by receiving carbon from the plants. The research found that each plant was supporting fungi that had an area of 1-2 times that of a tennis court.

Professor David Beerling, from the Department of Animal and Plant Sciences at the University of Sheffield, said: "By studying these ancient plants we open a window on the past to investigate how the earliest land plants evolved. Our results support the idea that the 'greening' of the Earth was promoted by a symbiosis between plants and fungi. It shows that plants didn't get a toe-hold on land without teaming up with fungi – this has long been suspected, but until now not investigated. It will require us to think again about the crucial role of cooperation between organisms that drove fundamental changes in the ecology of our planet."

Martin Bidartondo from the Jodrell Laboratory at the Royal Botanic Gardens, Kew, said: "Fungi are present in every type of habitat throughout the world and are essential for many plants to grow. It is exciting that we are now beginning to discover the fungi associated with 'lower' plants, and that many more still remain to be investigated."

Notes for Editors: Citation: 'Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants' Claire P. Humphreys , Peter J. Franks , Mark Rees, Martin I. Bidartondo, Jonathan R. Leake & David J. Beerling.

The article will be published online on the Nature Communications' website on 02 November 2010.

Lauren Anderson | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>