Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows adaptive capacity of reef corals to climate change may be widespread

11.04.2012
Global survey of corals using high sensitivity genetic analysis shows many species can host multiple symbionts

A new study by scientists at the University of Miami's Rosenstiel School of Marine & Atmospheric Science suggests that many species of reef-building corals may be able to adapt to warming waters by relying on their closest aquatic partners - algae. The corals' ability to host a variety of algal types, each with different sensitivities to environmental stress, could offer a much-needed lifeline in the face of global climate change.

Using a highly sensitive genetic technique, Ph.D. student Rachel Silverstein analyzed 39 coral species from DNA collected in the Indo-Pacific and Caribbean collected over the last 15 years. Most of these species had not previously been thought capable of hosting more than one type of the single-celled symbiotic algae, called zooxanthellae, which live inside the coral and help to supply them with energy. Silverstein's results revealed that at least one colony of all 39 species tested had at least two varieties of algae, including one thought to be heat tolerant. Over half of the species were found to associate with all four of the major types of algae found in corals.

"This study shows that more coral species are able to host multiple algal symbionts than we previously thought," said Andrew Baker, associate professor at UM's Rosenstiel School and co-author of the study. "The fact that they all seem to be capable of hosting symbionts that might help them survive warmer temperatures suggests they have hidden potential that was once thought to be confined to just a few special species."

More than 10 years ago, Baker was one of the first scientists to suggest that the ability of corals to associate with diverse algal symbionts may be one mechanism by which they are able to rapidly respond to environmental changes, such as increased ocean temperatures due to climate change.

"Although our study shows that different coral species do tend to have preferences in their algal partners, the fact that these preferences are not absolutely rigid means that we cannot ignore the possibility that most corals might change partners in response to environmental changes in the future," said Silverstein.

Globally, reefs have lost more than 70 percent of their corals as a result of pollution, disease, overfishing, and climate change. Increased temperatures cause coral "bleaching," in which corals expel their algal partners, turn pale, and often die. However, some symbionts can resist bleaching in warmer waters and may help the corals survive during stress. The ability to host multiple symbionts may help save coral reefs from future losses during expected ocean temperatures increases of 2-4 degrees Celsius (3-7 degrees Fahrenheit) by 2100.

"These new findings should encourage us to find better ways to protect coral reef ecosystems from overfishing, pollution and habitat destruction, and buy us some time to avoid the worst climate change scenarios," said Baker, who is also a research associate of the Wildlife Conservation Society in New York.

The study, titled "Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change," was published in the online edition of the journal Proceedings of the Royal Society B. Adrienne Correa, a former UM Rosenstiel School student of Baker's and a current postdoc at Oregon State University, is a co-author on the study, as well. The U.S. National Science Foundation, the Wildlife Conservation Society, the Lenfest Ocean Program and Pew Fellows Program in Marine Conservation funded the study.

About the University of Miami's Rosenstiel School

Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>