Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows adaptive capacity of reef corals to climate change may be widespread

Global survey of corals using high sensitivity genetic analysis shows many species can host multiple symbionts

A new study by scientists at the University of Miami's Rosenstiel School of Marine & Atmospheric Science suggests that many species of reef-building corals may be able to adapt to warming waters by relying on their closest aquatic partners - algae. The corals' ability to host a variety of algal types, each with different sensitivities to environmental stress, could offer a much-needed lifeline in the face of global climate change.

Using a highly sensitive genetic technique, Ph.D. student Rachel Silverstein analyzed 39 coral species from DNA collected in the Indo-Pacific and Caribbean collected over the last 15 years. Most of these species had not previously been thought capable of hosting more than one type of the single-celled symbiotic algae, called zooxanthellae, which live inside the coral and help to supply them with energy. Silverstein's results revealed that at least one colony of all 39 species tested had at least two varieties of algae, including one thought to be heat tolerant. Over half of the species were found to associate with all four of the major types of algae found in corals.

"This study shows that more coral species are able to host multiple algal symbionts than we previously thought," said Andrew Baker, associate professor at UM's Rosenstiel School and co-author of the study. "The fact that they all seem to be capable of hosting symbionts that might help them survive warmer temperatures suggests they have hidden potential that was once thought to be confined to just a few special species."

More than 10 years ago, Baker was one of the first scientists to suggest that the ability of corals to associate with diverse algal symbionts may be one mechanism by which they are able to rapidly respond to environmental changes, such as increased ocean temperatures due to climate change.

"Although our study shows that different coral species do tend to have preferences in their algal partners, the fact that these preferences are not absolutely rigid means that we cannot ignore the possibility that most corals might change partners in response to environmental changes in the future," said Silverstein.

Globally, reefs have lost more than 70 percent of their corals as a result of pollution, disease, overfishing, and climate change. Increased temperatures cause coral "bleaching," in which corals expel their algal partners, turn pale, and often die. However, some symbionts can resist bleaching in warmer waters and may help the corals survive during stress. The ability to host multiple symbionts may help save coral reefs from future losses during expected ocean temperatures increases of 2-4 degrees Celsius (3-7 degrees Fahrenheit) by 2100.

"These new findings should encourage us to find better ways to protect coral reef ecosystems from overfishing, pollution and habitat destruction, and buy us some time to avoid the worst climate change scenarios," said Baker, who is also a research associate of the Wildlife Conservation Society in New York.

The study, titled "Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change," was published in the online edition of the journal Proceedings of the Royal Society B. Adrienne Correa, a former UM Rosenstiel School student of Baker's and a current postdoc at Oregon State University, is a co-author on the study, as well. The U.S. National Science Foundation, the Wildlife Conservation Society, the Lenfest Ocean Program and Pew Fellows Program in Marine Conservation funded the study.

About the University of Miami's Rosenstiel School

Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit

Barbra Gonzalez | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>