Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study sheds light on evolution of 2009 pandemic influenza A(H1N1) virus in Japan

26.04.2011
Analysis of mutations of the 2009 pandemic influenza A(H1N1) virus by researchers at the RIKEN Omics Science Center (OSC) has revealed major genetic differences between the virus in its early phase of infection in Japan and in its peak phase.

While yielding valuable clues on the genetic origins of drug resistance, the findings also pave the way toward the development of new diagnostic kits for detecting and preventing the spread of global pandemic diseases.

A unique triple combination of bird, swine and human flu viruses, the pandemic influenza A(H1N1) virus, first detected in April of 2009, quickly spread from Mexico to locations across the world. By April 2010, outbreaks of the disease at both local and global scales had resulted in roughly 18,000 deaths worldwide, causing serious damage both to human health and on the global economy.

In Japan, the first case of the pandemic was reported on May 9, 2009, thereafter spreading to hundreds of people in Osaka and Kobe and eventually leading to more than 200 deaths in the country. Existing research on the spread of the virus in Japan has provided valuable information on local strains during the early phase of infection and on their classification into different groups. How the pandemic evolved to reach its peak phase of contagion, however, is not yet well understood.

... more about:
»H1N1 »OSC »Omics »Osaka »Science TV »global scale »virus strain

To clarify the genetic basis for this evolution, the OSC group studied 253 samples of the virus collected from the Osaka area during the initial phase (May, 2009) and from the Kansai and Kanto areas during the peak phase (October, 2009 to January 2010) of contagion. Of 20 different mutation groups identified in the peak infection group, analysis revealed that 12 were entirely new to Japan. Rapid mutation of the virus strains was traced to a genome with an extremely high evolutionary rate.

Among the variety of mutants discovered, the researchers were able to pinpoint two mutations which clearly differentiate the early phase and peak phase viruses. They also identified mutations in some viruses which confer resistance to Oseltamivir (Tamiflu), one of the most widely-used antiviral drugs. Published in the journal PLoS ONE, the findings together mark a major advance in efforts to understand the genetic origins of the 2009 A(H1N1) virus, and a key step in OSC-centered efforts to develop on-site detection techniques for controlling infection of deadly pandemics.

For more information, please contact:
Dr. Toshihisa Ishikawa
LSA Technology Development Unit
RIKEN Omics Science Center
Tel: +81-(045)503-9222 / Fax: +81-(045)503-9216
E-mail: toshi-i@gsc.riken.jp
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
E-mail: koho@riken.jp

Tomoko Ikawa | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: H1N1 OSC Omics Osaka Science TV global scale virus strain

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>