Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study sheds light on evolution of 2009 pandemic influenza A(H1N1) virus in Japan

26.04.2011
Analysis of mutations of the 2009 pandemic influenza A(H1N1) virus by researchers at the RIKEN Omics Science Center (OSC) has revealed major genetic differences between the virus in its early phase of infection in Japan and in its peak phase.

While yielding valuable clues on the genetic origins of drug resistance, the findings also pave the way toward the development of new diagnostic kits for detecting and preventing the spread of global pandemic diseases.

A unique triple combination of bird, swine and human flu viruses, the pandemic influenza A(H1N1) virus, first detected in April of 2009, quickly spread from Mexico to locations across the world. By April 2010, outbreaks of the disease at both local and global scales had resulted in roughly 18,000 deaths worldwide, causing serious damage both to human health and on the global economy.

In Japan, the first case of the pandemic was reported on May 9, 2009, thereafter spreading to hundreds of people in Osaka and Kobe and eventually leading to more than 200 deaths in the country. Existing research on the spread of the virus in Japan has provided valuable information on local strains during the early phase of infection and on their classification into different groups. How the pandemic evolved to reach its peak phase of contagion, however, is not yet well understood.

... more about:
»H1N1 »OSC »Omics »Osaka »Science TV »global scale »virus strain

To clarify the genetic basis for this evolution, the OSC group studied 253 samples of the virus collected from the Osaka area during the initial phase (May, 2009) and from the Kansai and Kanto areas during the peak phase (October, 2009 to January 2010) of contagion. Of 20 different mutation groups identified in the peak infection group, analysis revealed that 12 were entirely new to Japan. Rapid mutation of the virus strains was traced to a genome with an extremely high evolutionary rate.

Among the variety of mutants discovered, the researchers were able to pinpoint two mutations which clearly differentiate the early phase and peak phase viruses. They also identified mutations in some viruses which confer resistance to Oseltamivir (Tamiflu), one of the most widely-used antiviral drugs. Published in the journal PLoS ONE, the findings together mark a major advance in efforts to understand the genetic origins of the 2009 A(H1N1) virus, and a key step in OSC-centered efforts to develop on-site detection techniques for controlling infection of deadly pandemics.

For more information, please contact:
Dr. Toshihisa Ishikawa
LSA Technology Development Unit
RIKEN Omics Science Center
Tel: +81-(045)503-9222 / Fax: +81-(045)503-9216
E-mail: toshi-i@gsc.riken.jp
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
E-mail: koho@riken.jp

Tomoko Ikawa | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: H1N1 OSC Omics Osaka Science TV global scale virus strain

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>