Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study sheds light on brain's fear processing center

27.11.2009
Breathing carbon dioxide can trigger panic attacks, but the biological reason for this effect has not been understood. A new study by University of Iowa researchers shows that carbon dioxide increases brain acidity, which in turn activates a brain protein that plays an important role in fear and anxiety behavior.

The study, published in the Nov. 25 issue of the journal Cell, offers new possibilities for understanding the biological basis of panic and anxiety disorders in general and may suggest new approaches for treating these conditions.

The researchers focused on a brain protein known as acid-sensing ion channel 1a (ASIC1a). This protein is abundant in the amygdala -- the region deep in the brain that processes fear signals and directs fear behavior. The UI team previously found that blocking or removing ASIC1a reduces innate fear and alters fear memory in mice.

"As long ago as 1918, scientists learned that carbon dioxide triggers abnormal responses in patients with anxiety disorders, but our study provides the first molecular evidence for a mechanism that explains how carbon dioxide can trigger fear and anxiety," said John Wemmie, M.D., Ph.D., associate professor of psychiatry and neurosurgery at the UI Carver College of Medicine and a staff physician and researcher at the Iowa City Veterans Affairs Medical Center. "The findings are a foundation for saying that ASIC proteins in the amygdala might play a key role in sensitivity to carbon dioxide."

In addition to helping explain why breathing carbon dioxide can trigger panic attacks, the study also suggests a new role for the amygdala as a sensor that can detect certain fear signals for itself.

"This is a new finding that the amygdala, which is considered the brain's computer processor for fear, can also function as a sensor for detecting chemical signals -- carbon dioxide and acidity (low pH) -- that are known to trigger panic attacks in susceptible individuals," Wemmie said.

Carbon dioxide inhalation can be deadly at high doses. The study suggests that evolution may have provided humans with a vital ability to detect and respond rapidly to carbon dioxide by placing within the same brain region the ability to detect the threat posed by carbon dioxide and the ability to initiate a "fight or flight" response.

The new study shows that inhaled carbon dioxide increases brain acidity and evokes fear behavior in mice by activating ASIC1a in the amygdala. Fear memory is also enhanced when carbon dioxide activates the protein.

Conversely, the study team, including first author Adam Ziemann, M.D., Ph.D., found that making brain tissue less acidic (raising brain pH) blunted fear behavior produced by carbon dioxide and reduced learned fear.

"It's been suggested that controlling breathing with breath exercises could have anti-anxiety effects," Wemmie said. "Our results make me wonder if some of those breath exercises to control fear and anxiety might be acting by inhibiting the ASIC channels in the amygdala by raising the pH."

Wemmie and his colleagues are now investigating whether ASIC1a abnormalities contribute to panic and anxiety disorder in people or to carbon dioxide sensitivity in patients with panic disorder.

If ASIC1a plays the same role in people as the studies suggest it does in mice, then drugs that target ASIC channels or strategies that alter brain acidity could hold promise for treating a wide range of panic and anxiety disorders.

In addition to Wemmie and Ziemann, the research team included Jason Allen; Nader Dahdaleh, M.D.; Iuliia Drebot, Ph.D.; Matt Coryell, Ph.D.; Amanda Wunsch; Cynthia Lynch; Frank Faraci, M.D., professor of internal medicine; Matthew Howard, M.D., professor and head of neurosurgery; and Michael Welsh, M.D., who is a Howard Hughes Medical Institute investigator and UI professor of internal medicine and molecular physiology and biophysics.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>