Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Sees Little Dust Risk for Subway Workers

13.01.2010
Compact Air Samplers Track Pollution in New York Tunnels

New York subway commuters may worry more about rats and rising fares than dust floating through the system, but for the workers who spend their whole shift below ground, air quality has long been a concern. Results from a new pilot study using miniaturized air samplers to look at steel dust exposure may help them breathe easier.

Steel dust, produced as thousands of train wheels roll through the tunnels each day, is a major source of pollution in one of the world's most extensive commuter rail systems. In the study, published this month in the journal Environmental Research, scientists tracked exposure in 39 subway workers and measured biological responses to three metals found in steel dust: iron, chromium and manganese. The study found no strong or consistent evidence of a biological response that might indicate elevated risk of dust-related disease. It also showed that workers were exposed to levels well below standards set by the U.S. Occupational Safety & Health Administration (OSHA).

"The results are good news, even though this was a small pilot study and not a comprehensive evaluation of potential subway-worker health risks from steel dust," said coauthor Steven Chillrud, a geochemist at Columbia University's Lamont-Doherty Earth Observatory.

Chillrud got interested in subway air when he coauthored a 2004 study aimed at understanding how and where teenagers were exposed to a variety of air pollutants. He and colleagues recruited high school students in Harlem to wear air-sampling backpacks to measure personal exposure. At the same time, fixed-site monitors ran inside and outside their homes and school. When the results came in, many students' backpacks showed much higher airborne levels of iron, manganese and chromium than the fixed-site samplers. These students shared one thing in common: they rode the subway.

To confirm that subways were the source of the metals, Chillrud had a Columbia student collect duplicate air samples while riding trains and sitting in stations. Signature ratios of metals were the same as those seen in the samples collected by the high-school students. Furthermore, the air-borne metal concentrations observed in stations and trains were more than a hundred times higher than above ground. It was lowest in cars, where dust gets trapped by air-conditioning filters, and highest in stations, where trains brake as they reach the platform.

This was not an immediate cause for alarm. Even in the stations, airborne levels of the three metals were 100 to 1,000 times lower than OSHA worker-safety limits. But, says Chillrud, the study showed that normal government air monitoring, usually done from rooftops, cannot predict human exposures to certain pollutants.

Chillrud and Paul Brandt-Rauf, then a professor at Columbia's Mailman School of Public Health, designed the new study to look for evidence of oxidative stress, or DNA damage, at exposure levels lower than those set by OSHA. But backpack-size samplers seemed unsafe, because they would stick out and increase tunnel workers' chances of being hit by a passing train. So the researchers designed a lightweight device, conveniently tucked into a gun-holster shoulder harness. Under one arm, they inserted an air pump; under the other, a battery pack.

"Putting the sampler under the arms made sense," said David Grass, lead author of the study. But shrinking the air pump had one drawback: it now produced a high-pitched whine. The researchers partly dampened this with a tiny muffler. "Fortunately for the study, the subway is a noisy environment to begin with, so the sound didn't bother the subway workers," said Grass. "They could hardly hear it."

Each worker wore the sampler for up to three work shifts, and after the last shift, blood and urine samples were taken. The researchers also tracked where the workers had been; depending on job descriptions, whether cleaning stations or repairing tracks, they were exposed to widely different dust levels. The results were compared with two control groups: bus drivers and suburban office workers, none of whom rode the subway.

The scientists found no consistent link between steel dust exposure and markers of oxidative stress or DNA damage that might indicate a greater risk for disease. Specifically, they found no strong association between the amount of metal detected by the subway workers' air samplers and the levels of markers of DNA damage or oxidative stress in blood and urine samples. There was also no consistent pattern of the blood and urine markers being elevated for subway worker as compared to the office and bus drivers.

The researchers warn that the study has several limitations. A much larger study would have been better able to detect smaller effects. The study also did not include female subway workers, which may be important since men and women are known to regulate metal levels differently. There were no assessments of parameters like lung function, heart rate variations or direct metal uptake into the brain—measurements that could indicate other potential health impacts. Nor did the study consider the impact on the general public or susceptible subgroups such as children or the elderly.

The study also confirms earlier evidence that levels of particulate pollution in New York subways are far lower than in other city systems, including Toronto, London and Stockholm. A switch from friction to electrical braking in 1971 may have helped cut levels of steel dust in stations, and the relatively shallow depth of New York's subway lines appears to translate into higher ventilation rates.

Kim Martineau | EurekAlert!
Further information:
http://www.ldeo.columbia.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>