Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study says we’re over the hill at 24

15.04.2014

It’s a hard pill to swallow, but if you’re over 24 years of age you’ve already reached your peak in terms of your cognitive motor performance, according to a new Simon Fraser University study.

SFU’s Joe Thompson, a psychology doctoral student, associate professor Mark Blair, Thompson’s thesis supervisor, and Andrew Henrey, a statistics and actuarial science doctoral student, deliver the news in a just-published PLOS ONE Journal paper.

In one of the first social science experiments to rest on big data, the trio investigates when we start to experience an age-related decline in our cognitive motor skills and how we compensate for that.

The researchers analyzed the digital performance records of 3,305 StarCraft 2 players, aged 16 to 44. StarCraft 2 is a ruthless competitive intergalactic computer war game that players often undertake to win serious money.

Their performance records, which can be readily replayed, constitute big data because they represent thousands of hours worth of strategic real-time cognitive-based moves performed at varied skill levels.

Using complex statistical modeling, the researchers distilled meaning from this colossal compilation of information about how players responded to their opponents and more importantly, how long they took to react.

“After around 24 years of age, players show slowing in a measure of cognitive speed that is known to be important for performance,” explains Thompson, the lead author of the study, which is his thesis. “This cognitive performance decline is present even at higher levels of skill.”

But there’s a silver lining in this earlier-than-expected slippery slope into old age. “Our research tells a new story about human development,” says Thompson.

“Older players, though slower, seem to compensate by employing simpler strategies and using the game’s interface more efficiently than younger players, enabling them to retain their skill, despite cognitive motor-speed loss.”

For example, older players more readily use short cut and sophisticated command keys to compensate for declining speed in executing real time decisions.

 The findings, says Thompson, suggest “that our cognitive-motor capacities are not stable across our adulthood, but are constantly in flux, and that our day-to-day performance is a result of the constant interplay between change and adaptation.”

Thompson says this study doesn’t inform us about how our increasingly distracting computerized world may ultimately affect our use of adaptive behaviours to compensate for declining cognitive motor skills.

But he does say our increasingly digitized world is providing a growing wealth of big data that will be a goldmine for future social science studies such as this one.

Simon Fraser University is consistently ranked among Canada's top comprehensive universities and is one of the top 50 universities in the world under 50 years old. With campuses in Vancouver, Burnaby and Surrey, B.C., SFU engages actively with the community in its research and teaching, delivers almost 150 programs to more than 30,000 students, and has more than 125,000 alumni in 130 countries.

Contact:
Joe Thompson (White Rock resident), 604.367.7494 (cell), jjthomps@sfu.ca
Mark Blair (Burnaby resident), 604.562.4963, mblair@sfu.ca
Andrew Henrey, (Langley resident), 778.235.9147, ajh5@sfu.ca
Carol Thorbes, PAMR, 778.782.3035, cthorbes@sfu.ca

Simon Fraser University: Engaging Students. Engaging Research. Engaging Communities.

Carol Thorbes | Eurek Alert!
Further information:
http://www.sfu.ca
http://www.sfu.ca/pamr/media-releases/2014/study-says-we_re-over-the-hill-at-24.html

Further reports about: SFU cognitive competitive intergalactic Computer levels strategies thesis

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>