Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study: Rising temperatures challenge Salt Lake City’s water supply

04.11.2013
Sensitivity study helps the city, others in the Intermountain West, plan for the future

In an example of the challenges water-strapped Western cities will face in a warming world, new research shows that every degree Fahrenheit of warming in the Salt Lake City region could mean a 1.8 to 6.5 percent drop in the annual flow of streams that provide water to the city.

By midcentury, warming Western temperatures may mean that some of the creeks and streams that help slake Salt Lake City’s thirst will dry up several weeks earlier in the summer and fall, according to the new paper, published today in the journal Earth Interactions. The findings may help regional planners make choices about long-term investments, including water storage and even land-protection policies.

Earth Interactions is jointly published by the American Geophysical Union, the American Meteorological Society, and the Association of American Geographers.

“Many Western water suppliers are aware that climate change will have impacts, but they don’t have detailed information that can help them plan for the future,” said lead author Tim Bardsley, with NOAA’s Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder. “Because our research team included hydrologists, climate scientists and water utility experts, we could dig into the issues that mattered most to the operators responsible for making sure clean water flows through taps and sprinklers without interruption.”

Bardsley works for the CIRES Western Water Assessment, from the NOAA Colorado Basin River Forecast Center in Salt Lake City. For the new paper, he worked closely with colleagues from the city’s water utility, the National Center for Atmospheric Research (NCAR), NOAA’s Earth System Research Laboratory and the University of Utah.

The team relied on climate model projections of temperature and precipitation in the area, historical data analysis, and a detailed understanding of the region from which the city utility obtains water. The study also used NOAA streamflow forecasting models that provide information for Salt Lake City’s current water operations and management.

The picture that emerged was similar, in some ways, to previous research on the water in the Interior West: Warmer temperatures alone will cause more of the region’s precipitation to fall as rain than snow, leading to earlier runoff and less water in creeks and streams in the late summer and fall.

“Many snow-dependent regions follow a consistent pattern in responding to warming, but it’s important to drill down further to understand the sensitivity of watersheds that matter for individual water supply systems,” said NCAR’s Andy Wood, a co-author.

The specifics in the new analysis—which creeks are likely to be impacted most and soonest, how water sources on the nearby western flank of the Wasatch Mountains and the more distant eastern flank will fare—are critical to water managers with Salt Lake City.

“We are using the findings of this sensitivity analysis to better understand the range of impacts we might experience under climate change scenarios,” said co-author Laura Briefer, water resources manager at the Salt Lake City Department of Public Utilities. “This is the kind of tool we need to help us adapt to a changing climate, anticipate future changes and make sound water-resource decisions.”

“Water emanating from our local Wasatch Mountains is the lifeblood of the Salt Lake Valley, and is vulnerable to the projected changes in climate,” said Salt Lake City mayor Ralph Becker. “This study, along with other climate adaptation work Salt Lake City is doing, helps us plan to be a more resilient community in a time of climate change.”

Sidebar

CIRES is a joint institute of NOAA and CU-Boulder.

Among the details in the new assessment:

Temperatures are already rising in northern Utah, about 2 degrees Fahrenheit (1.1 degrees Celsius) in the last century, and continue to climb. Summer temperatures have increased especially steeply and are expected to continue to do so. Increasing temperatures during the summer irrigation season may increase water demand.

Every increase in a degree Fahrenheit (0.56 degrees Celsius) means an average decrease of 3.8 percent in annual water flow from watersheds used by Salt Lake City. This means less water available from Salt Lake City’s watersheds in the future.

Lower-elevation streams are more sensitive to increasing temperatures, especially from May through September, and city water experts may need to rely on less-sensitive, higher-elevation sources in late summer, or more water storage.

Models tell an uncertain story about total future precipitation in the region, primarily because Utah is on the boundary of the Southwest (projected to dry) and the U.S. northern tier states (projected to get wetter).

Overall, models suggest increased winter flows, when water demand is lower, and decreased summer flows when water demand peaks.

Annual precipitation would need to increase by about 10 percent to counteract the stream-drying effect of a 5-degree increase in temperature.

A 5-degree Fahrenheit temperature increase (2.8 degrees Celsius) would also mean that peak water flow in the western Wasatch creeks would occur two to four weeks earlier in the summer than it does today. This earlier stream runoff will make it more difficult to meet water demand as the summer irrigation season progresses.

If you are a journalist with a press subscription to AGU journals, your subscription will not provide access to this paper.

Journalists and public information officers (PIOs) of educational and scientific institutions can view the paper’s abstract at http://journals.ametsoc.org/doi/abs/10.1175/2012EI000501.1 However, for access to the full paper, you must request a PDF copy of this article by sending an email to Thomas Sumner at tsumner@agu.org.

Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Planning for an Uncertain Future: Climate Change Sensitivity”

Authors:

Tim Bardsley
Western Water Assessment, Salt Lake City, Utah;
Andrew Wood: National Center for Atmospheric Research, Boulder, Colorado;
Mike Hobbins
Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado;
Tracie Kirkham, Laura Briefer and Jeff Niermeyer
Salt Lake City Department of Public Utilities, Salt Lake City, Utah;
Steven Burian
University of Utah, Salt Lake City, Utah.
Contact information for the authors:
Tim Bardsley, Email: wwa.bardsley@gmail.com, Cell Phone: +1 (801) 557-3783
Laura Briefer, Email: Laura.Briefer@slcgov.com, Cell Phone: +1 (801) 483-6741
AGU Contact:
Thomas Sumner
+1 (202) 777-7516
tsumner@agu.org
CIRES Contact:
Katy Human, CIRES communications director
+1 (303) 735-0196
kathleen.human@colorado.edu
NCAR Contact:
David Hosansky, NCAR media relations manager
+1 (303) 497-8611
hosansky@ucar.edu
Salt Lake City Contact:
Karen Hale, Office of the Mayor, Salt Lake City, communications director
+1 (801) 535-7739
Karen.Hale@slcgov.com

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://news.agu.org/press-release/new-study-rising-temperatures-challenge-salt-lake-citys-water-supply/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>