Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of ribosome evolution challenges RNA world hypothosis

13.03.2012
In the beginning – of the ribosome, the cell’s protein-building workbench – there were ribonucleic acids, the molecules we call RNA that today perform a host of vital functions in cells. And according to a new analysis, even before the ribosome’s many working parts were recruited for protein synthesis, proteins also were on the scene and interacting with RNA. This finding challenges a long-held hypothesis about the early evolution of life.
The study appears in the journal PLoS ONE.

The “RNA world” hypothesis, first promoted in 1986 in a paper in the journal Nature and defended and elaborated on for more than 25 years, posits that the first stages of molecular evolution involved RNA and not proteins, and that proteins (and DNA) emerged later, said University of Illinois crop sciences and Institute for Genomic Biology professor Gustavo Caetano-Anollés, who led the new study.

“I’m convinced that the RNA world (hypothesis) is not correct,” Caetano-Anollés said. “That world of nucleic acids could not have existed if not tethered to proteins.”

The ribosome is a “ribonucleoprotein machine,” a complex that can have as many as 80 proteins interacting with multiple RNA molecules, so it makes sense that this assemblage is the result of a long and complicated process of gradual co-evolution, Caetano-Anollés said. Furthermore, “you can’t get RNA to perform the molecular function of protein synthesis that is necessary for the cell by itself.”

Proponents of the RNA world hypothesis make basic assumptions about the evolutionary origins of the ribosome without proper scientific support, Caetano-Anollés said. The most fundamental of these assumptions is that the part of the ribosome that is responsible for protein synthesis, the peptidyl transferase center (PTC) active site, is the most ancient.

In the new analysis, Caetano-Anollés and graduate student Ajith Harish (now a post-doctoral researcher at Lund University in Sweden) subjected the universal protein and RNA components of the ribosome to rigorous molecular analyses – mining them for evolutionary information embedded in their structures. (They also analyzed the thermodynamic properties of the ribosomal RNAs.) They used this information to generate timelines of the evolutionary history of the ribosomal RNAs and proteins.

These two, independently generated “family trees” of ribosomal proteins and ribosomal RNAs showed “great congruence” with one another, Caetano-Anollés said. Proteins surrounding the PTC, for example, were as old as the ribosomal RNAs that form that site. In fact, the PTC appeared in evolution just after the two primary subunits that make up the ribosome came together, with RNA bridges forming between them to stabilize the association.

The timelines suggest that the PTC appeared well after other regions of the protein-RNA complex, Caetano-Anollés said. This strongly suggests, first, that proteins were around before ribosomal RNAs were recruited to help build them, and second, that the ribosomal RNAs were engaged in some other task before they picked up the role of aiding in protein synthesis, he said.

“This is the crucial piece of the puzzle,” Caetano-Anollés said. “If the evolutionary build-up of ribosomal proteins and RNA and the interactions between them occurred gradually, step-by-step, the origin of the ribosome cannot be the product of an RNA world. Instead, it must be the product of a ribonucleoprotein world, an ancient world that resembles our own. It appears the basic building blocks of the machinery of the cell have always been the same from the beginning of life to the present: evolving and interacting proteins and RNA molecules.”

“This is a very engaging and provocative article by one of the most innovative and productive researchers in the field of protein evolution,” said University of California at San Diego research professor Russell Doolittle, who was not involved in the study. Doolittle remains puzzled, however, by “the notion that some early proteins were made before the evolution of the ribosome as a protein-manufacturing system.” He wondered how – if proteins were more ancient than the ribosomal machinery that today produces most of them –“the amino acid sequences of those early proteins were ‘remembered’ and incorporated into the new system.”

Caetano-Anollés agreed that this is “a central, foundational question” that must be answered.

“It requires understanding the boundaries of emergent biological functions during the very early stages of protein evolution,” he said. However, he said, “the proteins that catalyze non-ribosomal protein synthesis – a complex and apparently universal assembly-line process of the cell that does not involve RNA molecules and can still retain high levels of specificity – are more ancient than ribosomal proteins. It is therefore likely that the ribosomes were not the first biological machines to synthesize proteins.”

Caetano-Anollés also noted that the specificity of the ribosomal system “depends on the supply of amino acids appropriately tagged with RNA for faithful translation of the genetic code. This tagging is solely based on proteins, not RNAs,” he said. This suggests, he said, that the RNA molecules began as co-factors that aided in protein synthesis and fine-tuned it, resulting in the elaborate machinery of the ribosome that exists today.

The National Science Foundation and the United Soybean Board supported this research.

Editor’s notes: To reach Gustavo Caetano-Anollés, call 217-333-8172;
email gca@illinois.edu.
The paper, “Ribosomal History Reveals Origins of Modern Protein Synthesis,” is available online and from the U. of I. News Bureau

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>