Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study rewrites the evolutionary history of C4 grasses

17.11.2010
According to a popular hypothesis, grasses such as maize, sugar cane, millet and sorghum got their evolutionary start as a result of a steep drop in atmospheric carbon dioxide levels during the Oligocene epoch, more than 23 million years ago.

A new study overturns that hypothesis, presenting the first geological evidence that the ancestors of these and other C4 grasses emerged millions of years earlier than previously established.

The findings are published in the journal Geology.

C4 plants are more efficient than C3 plants at taking up atmospheric carbon dioxide and converting it into the starches and sugars vital to plant growth. (C3 and C4 refer to the number of carbon atoms in the first molecular product of photosynthesis.) Having evolved relatively recently, C4 plants make up 3 percent of all living species of flowering plants. But they account for about 25 percent of global plant productivity on land. They dominate grasslands in tropical, subtropical and warm temperate areas. They also are a vital food source and an important feedstock for the production of biofuels.

"C4 plants are very successful, they're economically very important, but we actually don't know when they originated in the geological history," said University of Illinois plant biology professor Feng Sheng Hu, who led the new analysis. "To me, it's one of the most profound geological and ecological questions as a paleoecologist I can tackle."

A previous study dated the oldest C4 plant remnant found, a tiny fragment called a phytolith, to about 19 million years ago. Other studies analyzed the ratios of carbon isotopes in bulk soil samples to determine the ratio of C3 to C4 plant remains at different soil horizons, which correspond to different geological time periods. (C3 and C4 plants differ in their proportions of two carbon isotopes, C-12 and C-13.) Those studies indicated that C4 grasses were present as early as the Early Micocene, about 18 million years ago.

Rather than analyzing plant matter in bulk sediment samples, David Nelson, a postdoctoral researcher in Hu's lab at the time of the study (now a professor at the University of Maryland), analyzed the carbon isotope ratios of individual grains of grass pollen, a technique he pioneered while working with Hu in the lab of biogeochemistry professor Ann Pearson at Harvard University.

Using a spooling-wire micro-combustion device to combust the grains, and an isotope mass spectrometer to determine the relative ratio of C-12 and C-13 in the sample, Nelson and Illinois graduate student Michael Urban analyzed hundreds of individual grains of grass pollen collected from study sites in Spain and France.

"Because we analyze carbon isotopes in a material unique to grasses (pollen) we were able to detect C4 grasses at lower abundances than previous studies," Nelson said.

This analysis found "unequivocal evidence for C4 grasses in southwestern Europe by the Early Oligocene," the authors wrote. This means these grasses were present 32 to 34 million years ago, well before studies indicate atmospheric carbon dioxide levels made their precipitous decline.

"The evidence refutes the idea that low (atmospheric) CO2 was an important driver and/or precondition for the development of C4 photosynthesis," the authors wrote.

"This study challenges that hypothesis and basically says that something else was responsible for the evolution of C4 plants, probably higher temperature or drier conditions," Hu said. With atmospheric carbon dioxide levels now on the increase, he said, "there are also implications about how C3 and C4 plants will fare in the future."

Researchers from Harvard University; the Universidad de Granada, Spain; and the Bureau de Recherche Géologiques et Minières, France, also contributed to the study.

The University of Illinois Research Board, the National Science Foundation, and the David and Lucille Packard Foundation Fellowships Program supported this study.

Editor's notes: To reach Feng Sheng Hu, call 217-244-2982; e-mail fhu@illinois.edu.

The paper, "Isotopic Evidence of C4 Grasses in Southwestern Europe During the Early Oligocene-Middle Miocene," is available online and from the U. of I. News Bureau.

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>