Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study rewrites the evolutionary history of C4 grasses

17.11.2010
According to a popular hypothesis, grasses such as maize, sugar cane, millet and sorghum got their evolutionary start as a result of a steep drop in atmospheric carbon dioxide levels during the Oligocene epoch, more than 23 million years ago.

A new study overturns that hypothesis, presenting the first geological evidence that the ancestors of these and other C4 grasses emerged millions of years earlier than previously established.

The findings are published in the journal Geology.

C4 plants are more efficient than C3 plants at taking up atmospheric carbon dioxide and converting it into the starches and sugars vital to plant growth. (C3 and C4 refer to the number of carbon atoms in the first molecular product of photosynthesis.) Having evolved relatively recently, C4 plants make up 3 percent of all living species of flowering plants. But they account for about 25 percent of global plant productivity on land. They dominate grasslands in tropical, subtropical and warm temperate areas. They also are a vital food source and an important feedstock for the production of biofuels.

"C4 plants are very successful, they're economically very important, but we actually don't know when they originated in the geological history," said University of Illinois plant biology professor Feng Sheng Hu, who led the new analysis. "To me, it's one of the most profound geological and ecological questions as a paleoecologist I can tackle."

A previous study dated the oldest C4 plant remnant found, a tiny fragment called a phytolith, to about 19 million years ago. Other studies analyzed the ratios of carbon isotopes in bulk soil samples to determine the ratio of C3 to C4 plant remains at different soil horizons, which correspond to different geological time periods. (C3 and C4 plants differ in their proportions of two carbon isotopes, C-12 and C-13.) Those studies indicated that C4 grasses were present as early as the Early Micocene, about 18 million years ago.

Rather than analyzing plant matter in bulk sediment samples, David Nelson, a postdoctoral researcher in Hu's lab at the time of the study (now a professor at the University of Maryland), analyzed the carbon isotope ratios of individual grains of grass pollen, a technique he pioneered while working with Hu in the lab of biogeochemistry professor Ann Pearson at Harvard University.

Using a spooling-wire micro-combustion device to combust the grains, and an isotope mass spectrometer to determine the relative ratio of C-12 and C-13 in the sample, Nelson and Illinois graduate student Michael Urban analyzed hundreds of individual grains of grass pollen collected from study sites in Spain and France.

"Because we analyze carbon isotopes in a material unique to grasses (pollen) we were able to detect C4 grasses at lower abundances than previous studies," Nelson said.

This analysis found "unequivocal evidence for C4 grasses in southwestern Europe by the Early Oligocene," the authors wrote. This means these grasses were present 32 to 34 million years ago, well before studies indicate atmospheric carbon dioxide levels made their precipitous decline.

"The evidence refutes the idea that low (atmospheric) CO2 was an important driver and/or precondition for the development of C4 photosynthesis," the authors wrote.

"This study challenges that hypothesis and basically says that something else was responsible for the evolution of C4 plants, probably higher temperature or drier conditions," Hu said. With atmospheric carbon dioxide levels now on the increase, he said, "there are also implications about how C3 and C4 plants will fare in the future."

Researchers from Harvard University; the Universidad de Granada, Spain; and the Bureau de Recherche Géologiques et Minières, France, also contributed to the study.

The University of Illinois Research Board, the National Science Foundation, and the David and Lucille Packard Foundation Fellowships Program supported this study.

Editor's notes: To reach Feng Sheng Hu, call 217-244-2982; e-mail fhu@illinois.edu.

The paper, "Isotopic Evidence of C4 Grasses in Southwestern Europe During the Early Oligocene-Middle Miocene," is available online and from the U. of I. News Bureau.

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Equipping form with function

23.06.2017 | Information Technology

New design improves performance of flexible wearable electronics

23.06.2017 | Materials Sciences

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>