Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals stem cells in a human parasite

26.02.2013
From the point of view of its ultimate (human) host, the parasitic flatworm Schistosoma mansoni has a gruesome way of life. It hatches in feces-tainted water, grows into a larva in the body of a snail and then burrows through human skin to take up residence in the veins. Once there, it grows into an adult, mates and, if it’s female, starts laying eggs. It can remain in the body for decades.

A new study offers insight into the cellular operations that give this flatworm its extraordinary staying power. The researchers, from the University of Illinois, demonstrated for the first time that S. mansoni harbors adult, non-sexual stem cells that can migrate to various parts of its body and replenish tissues. Their report appears in the journal Nature.


The researchers discovered that Schistosoma mansoni harbors a population of non-sexual stem cells (yellow dots dispersed throughout the organism) that replenish its tissues and contribute to its ability to live in its host for decades. | Photo by Phil Newmark

According to the World Health Organization, more than 230 million people are in need of treatment for Schistosoma infections every year. Most live in impoverished areas with little or no access to clean water. Infection with the worm (also known as a blood fluke) can lead to damaging inflammation spurred by the presence of the worm’s eggs in human organs and tissues.

“The female lays eggs more or less continuously, on the order of hundreds of eggs per day,” said U. of I. cell and developmental biology professor and Howard Hughes Medical Institute Investigator Phillip Newmark, who led the study with postdoctoral researcher James J. Collins III.

“The eggs that don’t get excreted in the feces to continue the life cycle actually become embedded inside host tissues, typically the liver, and those eggs trigger a massive inflammatory response that leads to tissue damage.”

Children are especially vulnerable to the effects of infection, in some cases experiencing delays in growth and brain development as a result of chronic inflammation brought on by the parasites.

The new study began with an insight stemming from years of work on a different flatworm, the planarian, in Newmark’s lab. Collins thought that schistosomes might make use of the same kinds of stem cells (called neoblasts in planarians) that allow planarians to regenerate new body parts and organs from even tiny fragments of living tissue.

“It just stood to reason that since schistosomes, like planaria, live so long that they must have a comparable type of system,” Collins said. “And since these flatworms are related, it made sense that they would have similar types of cells. But it had never been shown.”

In a series of experiments, Collins found that the schistosomes were loaded with proliferating cells that looked and behaved like planarian neoblasts, the cells that give them their amazing powers of regeneration. Like neoblasts, the undifferentiated cells in the schistosomes lived in the mesenchyme, a kind of loose connective tissue that surrounds the organs. And like neoblasts, these cells duplicated their DNA and divided to form two “daughter” cells, one of which copied its DNA again, a process that normally precedes cell division.

“Stem cells do two things,” Newmark said. “They divide to make more stem cells and they give rise to cells that can differentiate.”

Collins had labeled the cells with fluorescent markers. This allowed him to watch how they behaved. He noted that over the course of a few days, some of the labeled cells migrated into the gut or muscle, to become part of those tissues.

“We label the cells when they’re born and then we see what they grow up to become,” Collins said. “This is not conclusive evidence that these cells are equivalent to the planarian neoblasts, but it is consistent with the hypothesis that they are.”

The researchers went deeper, determining which genes were turned on or off, up or down in the proliferating cells as compared with the non-dividing cells. They identified a gene in the proliferating cells that coded for a growth factor receptor very similar to one found in planarians. When the researchers switched off the parasite’s ability to make use of this gene (using a technique called RNA interference in worms grown in the lab), the proliferating cells gradually died out.

“We postulated that these cells are important for the longevity of the parasite,” Collins said. “Now we can start asking which genes regulate these cells.”

“We started with the big question: How does a simple parasite survive in a host for decades?” Newmark said. “That implies that it has ways of repairing and maintaining its tissues. This study gives us insight into the really interesting biology of these parasites, and it may also open up new doors for making that life cycle a lot shorter.”

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>