Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals protective role for specialized cells in intestinal and respiratory systems

08.07.2014

UC Riverside discovery of electrostatic force field could inform future development of needle-free vaccines

Ripping a page from the Star Trek script, specialized cells of the barrier that lines the inside of the intestines and airways of humans have invoked a biological version of Captain Kirk's famous command "shields up" as a first defense against invading microbes.


David Lo (in lab coat) is a distinguished professor in the UC Riverside medical school's Division of Biomedical Sciences. He is seen here with a student.

Credit: L. Duka

Research in the UCR School of Medicine laboratory of David Lo found that certain cells of the epithelium have a potentially important role in immune surveillance – creating an electrostatic repulsion field to microbial invasion.

The study is featured on the cover of the July issue of Infection and Immunity, a journal published by the American Society for Microbiology. Co-authors of the study are Kaila M. Bennett, one of Lo's graduate students, and Sharon L. Walker, a UCR professor of chemical and environmental engineering.

The finding improves scientists' understanding of the densely packed protrusions – resembling a carpet – on the surface of some cells that line the insides of the intestines and respiratory system. The protrusions, which biologists call microvilli, increase the surface area of cells and have a role in absorbing nutrients, for instance.

But Lo's laboratory has found that the microvilli actually repel negatively charged bacteria and viruses, suggesting a protective "shield" akin to the force field that envelops the Enterprise in the plots of many "Star Trek" television episodes and movies.

"This is a whole new way of looking at immune surveillance in the epithelium of the human gut and airway," said Lo, a distinguished professor in the medical school's Division of Biomedical Sciences. "If we can take advantage of this electrostatic repulsion, it could improve the diagnosis and treatment of certain bacterial infections."

A number of bacterial and viral infections can gain a foothold in the human body through adsorption via the intestines and airways, such as Salmonella and the flu.

Lo's laboratory has for more than a dozen years studied immune responses in the gut and airways, focusing particularly on cells which function as an early warning in the immune system. "We study the role of certain epithelial cells in the immune system. By understanding how the immune system is able to capture and carry viruses and bacteria across this barrier to trigger a protective immune, we may be able to design better synthetic vaccines, including needle-free vaccines," Lo said.

Lo joined UCR in 2006. In addition to his faculty position in the UCR School of Medicine Division of Biomedical Sciences, he is affiliated with the UCR Center for Disease Vector Research and the UC Global Health Institute. He is a fellow of the American Association for the Advancement of Sciences (2007) and a 2005 recipient of a "Grand Challenges in Global Health" award, Bill and Melinda Gates Foundation and the Foundation for the National Institutes of Health.

###

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Kathy Barton | Eurek Alert!

Further reports about: Medicine UCR bacteria electrostatic immune intestines microvilli protective vaccines

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>