Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals potential role of 'love hormone' oxytocin in brain function

05.08.2013
Findings of NYU Langone researchers may have relevance in autism-spectrum disorder

In a loud, crowded restaurant, having the ability to focus on the people and conversation at your own table is critical. Nerve cells in the brain face similar challenges in separating wanted messages from background chatter. A key element in this process appears to be oxytocin, typically known as the “love hormone” for its role in promoting social and parental bonding.

In a study appearing online August 4 in Nature, NYU Langone Medical Center researchers decipher how oxytocin, acting as a neurohormone in the brain, not only reduces background noise, but more importantly, increases the strength of desired signals. These findings may be relevant to autism, which affects one in 88 children in the United States.

“Oxytocin has a remarkable effect on the passage of information through the brain,” says Richard W. Tsien, DPhil, the Druckenmiller Professor of Neuroscience and director of the Neuroscience Institute at NYU Langone Medical Center. “It not only quiets background activity, but also increases the accuracy of stimulated impulse firing. Our experiments show how the activity of brain circuits can be sharpened, and hint at how this re-tuning of brain circuits might go awry in conditions like autism.”

Children and adults with autism-spectrum disorder (ASD) struggle with recognizing the emotions of others and are easily distracted by extraneous features of their environment. Previous studies have shown that children with autism have lower levels of oxytocin, and mutations in the oxytocin receptor gene predispose people to autism. Recent brain recordings from people with ASD show impairments in the transmission of even simple sensory signals.

The current study built upon 30-year old results from researchers in Geneva, who showed that oxytocin acted in the hippocampus, a region of the brain involved in memory and cognition. The hormone stimulated nerve cells – called inhibitory interneurons – to release a chemical called GABA. This substance dampens the activity of the adjoining excitatory nerve cells, known as pyramidal cells.

“From the previous findings, we predicted that oxytocin would dampen brain circuits in all ways, quieting both background noise and wanted signals,” Dr. Tsien explains. “Instead, we found that oxytocin increased the reliability of stimulated impulses – good for brain function, but quite unexpected.”

To resolve this paradox, Dr. Tsien and his Stanford graduate student Scott Owen collaborated with Gord Fishell, PhD, the Julius Raynes Professor of Neuroscience and Physiology at NYU Langone Medical Center, and NYU graduate student Sebnem Tuncdemir. They identified the particular type of inhibitory interneurons responsible for the effects of oxytocin: “fast-spiking” inhibitory interneurons.

The mystery of how oxytocin drives these fast-spiking inhibitory cells to fire, yet also increases signaling to pyramidal neurons, was solved through studies with rodent models. The researchers found that continually activating the fast-spiking inhibitory neurons – good for lowering background noise – also causes their GABA-releasing synapses to fatigue. Accordingly, when a stimulus arrives, the tired synapses release less GABA and excitation of the pyramidal neuron is not dampened as much, so that excitation drives the pyramidal neuron’s firing more reliably.

“The stronger signal and muffled background noise arise from the same fundamental action of oxytocin and give two benefits for the price of one,” Dr. Fishell explains. “It’s too early to say how the lack of oxytocin signaling is involved in the wide diversity of autism-spectrum disorders, and the jury is still out about its possible therapeutic effects. But it is encouraging to find that a naturally occurring neurohormone can enhance brain circuits by dialing up wanted signals while quieting background noise.”

Funding for this work was provided by the Burnett Family Fund, the Mosbacher Fund, the Mathers Foundation, the National Institute of Mental Health (MH071739), the National Institute of Neurological Disorders and Stroke (NS024067), and the Simons Foundation.

About NYU Langone Medical Center:

NYU Langone Medical Center—a world-class, patient-centered, integrated, academic medical center—is one of the nation’s premier destinations for excellence in patient care, biomedical research, and medical education. Located in the heart of Manhattan, NYU Langone is composed of Tisch Hospital, its flagship acute care facility; the Hospital for Joint Diseases, a dedicated inpatient orthopaedic hospital; Hassenfeld Pediatric Center, a comprehensive pediatric hospital supporting a full array of children’s health services; Rusk Rehabilitation, the #1 rehab program in New York since U.S. News & World Report began its hospital rankings in 1989; and a growing ambulatory care network with locations throughout Manhattan, the outer boroughs, and the tri-state area, bringing services directly to where its patients live and work. An integral part of NYU Langone, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people since 1841. NYU Langone's tri-fold mission to serve, teach, and discover is achieved 365 days a year. For more information, go to http://www.NYULMC.org.

Craig Andrews | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>