Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals potential role of 'love hormone' oxytocin in brain function

05.08.2013
Findings of NYU Langone researchers may have relevance in autism-spectrum disorder

In a loud, crowded restaurant, having the ability to focus on the people and conversation at your own table is critical. Nerve cells in the brain face similar challenges in separating wanted messages from background chatter. A key element in this process appears to be oxytocin, typically known as the “love hormone” for its role in promoting social and parental bonding.

In a study appearing online August 4 in Nature, NYU Langone Medical Center researchers decipher how oxytocin, acting as a neurohormone in the brain, not only reduces background noise, but more importantly, increases the strength of desired signals. These findings may be relevant to autism, which affects one in 88 children in the United States.

“Oxytocin has a remarkable effect on the passage of information through the brain,” says Richard W. Tsien, DPhil, the Druckenmiller Professor of Neuroscience and director of the Neuroscience Institute at NYU Langone Medical Center. “It not only quiets background activity, but also increases the accuracy of stimulated impulse firing. Our experiments show how the activity of brain circuits can be sharpened, and hint at how this re-tuning of brain circuits might go awry in conditions like autism.”

Children and adults with autism-spectrum disorder (ASD) struggle with recognizing the emotions of others and are easily distracted by extraneous features of their environment. Previous studies have shown that children with autism have lower levels of oxytocin, and mutations in the oxytocin receptor gene predispose people to autism. Recent brain recordings from people with ASD show impairments in the transmission of even simple sensory signals.

The current study built upon 30-year old results from researchers in Geneva, who showed that oxytocin acted in the hippocampus, a region of the brain involved in memory and cognition. The hormone stimulated nerve cells – called inhibitory interneurons – to release a chemical called GABA. This substance dampens the activity of the adjoining excitatory nerve cells, known as pyramidal cells.

“From the previous findings, we predicted that oxytocin would dampen brain circuits in all ways, quieting both background noise and wanted signals,” Dr. Tsien explains. “Instead, we found that oxytocin increased the reliability of stimulated impulses – good for brain function, but quite unexpected.”

To resolve this paradox, Dr. Tsien and his Stanford graduate student Scott Owen collaborated with Gord Fishell, PhD, the Julius Raynes Professor of Neuroscience and Physiology at NYU Langone Medical Center, and NYU graduate student Sebnem Tuncdemir. They identified the particular type of inhibitory interneurons responsible for the effects of oxytocin: “fast-spiking” inhibitory interneurons.

The mystery of how oxytocin drives these fast-spiking inhibitory cells to fire, yet also increases signaling to pyramidal neurons, was solved through studies with rodent models. The researchers found that continually activating the fast-spiking inhibitory neurons – good for lowering background noise – also causes their GABA-releasing synapses to fatigue. Accordingly, when a stimulus arrives, the tired synapses release less GABA and excitation of the pyramidal neuron is not dampened as much, so that excitation drives the pyramidal neuron’s firing more reliably.

“The stronger signal and muffled background noise arise from the same fundamental action of oxytocin and give two benefits for the price of one,” Dr. Fishell explains. “It’s too early to say how the lack of oxytocin signaling is involved in the wide diversity of autism-spectrum disorders, and the jury is still out about its possible therapeutic effects. But it is encouraging to find that a naturally occurring neurohormone can enhance brain circuits by dialing up wanted signals while quieting background noise.”

Funding for this work was provided by the Burnett Family Fund, the Mosbacher Fund, the Mathers Foundation, the National Institute of Mental Health (MH071739), the National Institute of Neurological Disorders and Stroke (NS024067), and the Simons Foundation.

About NYU Langone Medical Center:

NYU Langone Medical Center—a world-class, patient-centered, integrated, academic medical center—is one of the nation’s premier destinations for excellence in patient care, biomedical research, and medical education. Located in the heart of Manhattan, NYU Langone is composed of Tisch Hospital, its flagship acute care facility; the Hospital for Joint Diseases, a dedicated inpatient orthopaedic hospital; Hassenfeld Pediatric Center, a comprehensive pediatric hospital supporting a full array of children’s health services; Rusk Rehabilitation, the #1 rehab program in New York since U.S. News & World Report began its hospital rankings in 1989; and a growing ambulatory care network with locations throughout Manhattan, the outer boroughs, and the tri-state area, bringing services directly to where its patients live and work. An integral part of NYU Langone, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people since 1841. NYU Langone's tri-fold mission to serve, teach, and discover is achieved 365 days a year. For more information, go to http://www.NYULMC.org.

Craig Andrews | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>