Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals new possibility of reversing damage caused by MS

06.12.2010
Damage caused by multiple sclerosis could be reversed by activating stem cells that can repair injury in the central nervous system, a study has shown.

Researchers from the Universities of Cambridge and Edinburgh have identified a mechanism essential for regenerating insulating layers – known as myelin sheaths – that protect nerve fibres in the brain.

In additional studies in rodents, they showed how this mechanism can be exploited to make the brain's own stem cells better able to regenerate new myelin.

In multiple sclerosis, loss of myelin leads to the nerve fibres in the brain becoming damaged. These nerve fibres are important as they send messages to other parts of the body.

The scientists believe that this research will help in identifying drugs to encourage myelin repair in multiple sclerosis patients.

Professor Robin Franklin, Director of the MS Society's Cambridge Centre for Myelin Repair at the University of Cambridge, said: "Therapies that repair damage are the missing link in treating multiple sclerosis. In this study we have identified a means by which the brain's own stem cells can be encouraged to undertake this repair, opening up the possibility of a new regenerative medicine for this devastating disease."

The study, funded by the MS Society in the UK and the National Multiple Sclerosis Society in America, is published in Nature Neuroscience.

Professor Charles ffrench-Constant, of the University of Edinburgh's MS Society Centre for Multiple Sclerosis Research, said: "The aim of our research is to slow the progression of multiple sclerosis with the eventual aim of stopping and reversing it. This discovery is very exciting as it could potentially pave the way to find drugs that could help repair damage caused to the important layers that protect nerve cells in the brain."

Multiple sclerosis affects almost 100,000 people in the UK and several million worldwide. It often targets young adults between the ages of 20 and 40.

For more information please contact:

Genevieve Maul, Office of Communications, University of Cambridge
Tel: direct, +44 (0) 1223 765542, +44 (0) 1223 332300, Mob: +44 (0) 7774 017464 Email: Genevieve.maul@admin.cam.ac.uk
Catriona Kelly, Press and PR Office, University of Edinburgh
Tel 0131 651 4401; Mobile, 07979 446 209; catriona.kelly@ed.ac.uk
Notes to Editors:
1. The paper 'Retinoid X receptor gamma signaling accelerates CNS remyelination' will be published in the 05 December 2010 edition of Nature Neuroscience.

2. For reaction to this research from the MS Society, please call Jenna Litchfield in the MS Society press office on 07798 631674.

3. A picture of nerve fibres in rodents showing remyelination can be downloaded from http://jalbum.net/a/829951/

password: nervefibres

4. The MS Society is the UK's largest charity supporting people affected by multiple sclerosis.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>