Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals new genetic link to scleroderma

30.04.2010
DNA research seen as critical to finding cure
An international research consortium including scientists from The University of Texas Health Science Center at Houston (UTHealth) has identified a new genetic link to the systemic form of scleroderma. Researchers believe a thorough understanding of the genetic nature of the disease is crucial to developing a cure.

Systemic scleroderma is a profoundly disabling autoimmune disease that affects about 100,000 people in the United States. Autoimmune diseases are caused by malfunctioning immune systems, which attack their own cells.

In the May print issue of Nature Genetics, scientists report they found a new region of the human genome associated with increased systemic scleroderma susceptibility. “With our latest discovery, we are probably a quarter of the way to finding the genes and pathways responsible for systemic scleroderma,” said Maureen D. Mayes, M.D., one of the study’s senior authors and a professor of rheumatology at The University of Texas Medical School at Houston, which is a part of UTHealth. “Once most of the important genes are found, we will be able to focus on developing interventions to block their activity.”

In the study, scientists used a genetic research technique called a genome-wide association study that allows researchers to detect genetic variations associated with a particular disease. It was the first large application of this technique to systemic scleroderma, she said.

A genetic comparison of 2,296 people with systemic scleroderma to 5,171 without the disease led scientists to a region of the genome known as CD247. “This region contains a gene that is central to immunity, which makes this very exciting,” Mayes said.

Findings were confirmed during a second test involving 2,753 people with systemic scleroderma and 4,569 without systemic scleroderma. Participants were from the United States, Spain, Germany and The Netherlands.

Frank C. Arnett, M.D., one of the senior authors and professor at the UT Medical School at Houston, said research shows that scleroderma shares many susceptibility genes with lupus and other autoimmune diseases. This means that one day researchers may be able to more specifically target the causative pathways in each of these conditions, he said. He is the Elizabeth Bidgood Chair in Rheumatology and the Linda K. Finger Chair in Autoimmune and Connective Tissue Diseases at the UT Medical School at Houston.

The study also confirmed the link between systemic scleroderma and three other previously discovered areas of the genome - MHC, IRF5 and STAT4, Mayes said.

Building on this research, Mayes said scientists now plan to conduct a second study involving patients recruited from 10 scleroderma centers in the United States and Canada. “This will allow us to examine the findings more closely,” she said.

According to the Scleroderma Foundation, the word “scleroderma” comes from two Greek words: “sclero” meaning hard, and “derma” meaning skin. Hardening of the skin is one of the most visible manifestations of the disease. The symptoms of scleroderma vary greatly from individual to individual, and the effects of scleroderma can range from very mild to life-threatening. The seriousness will depend on what parts of the body are affected and the extent to which they are affected.

Peggy Brown, who is the vice president of the Texas Bluebonnet Chapter of the Scleroderma Foundation, is heartened by the research. “If they can figure out what causes it, they can find a cure,” Brown said.

The president of the Texas Bluebonnet Chapter, Cindi Brannum, said that because healthcare providers do not know what causes scleroderma, treatments are focused on symptoms. “We’re using other people’s medicine to treat our disease. There is no specific scleroderma treatment,” she said.

Forty-three-year-old scleroderma patient Shannon Abert, who was part of the study, said, “Scleroderma affects everyone differently. About the only thing we all share is Raynaud’s syndrome, which is discoloration of the fingers, and acid reflux.”

Also contributing to the study from the Division of Rheumatology at the UT Medical School at Houston were: Sandeep Agarwal, M.D., Ph.D., assistant professor; Shervin Assassi, M.D., assistant professor; Pravitt Gourh, M.D., internal medicine resident; and Filemon Tan, MD., Ph.D., associate professor.

Olga Y. Gorlova, Ph.D., associate professor in the Department of Epidemiology at The University of Texas M. D. Anderson Cancer Center, was also one of the senior authors.

The study, which is titled “Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus,” received support from the National Institutes of Health.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>