Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals new genetic link to scleroderma

30.04.2010
DNA research seen as critical to finding cure
An international research consortium including scientists from The University of Texas Health Science Center at Houston (UTHealth) has identified a new genetic link to the systemic form of scleroderma. Researchers believe a thorough understanding of the genetic nature of the disease is crucial to developing a cure.

Systemic scleroderma is a profoundly disabling autoimmune disease that affects about 100,000 people in the United States. Autoimmune diseases are caused by malfunctioning immune systems, which attack their own cells.

In the May print issue of Nature Genetics, scientists report they found a new region of the human genome associated with increased systemic scleroderma susceptibility. “With our latest discovery, we are probably a quarter of the way to finding the genes and pathways responsible for systemic scleroderma,” said Maureen D. Mayes, M.D., one of the study’s senior authors and a professor of rheumatology at The University of Texas Medical School at Houston, which is a part of UTHealth. “Once most of the important genes are found, we will be able to focus on developing interventions to block their activity.”

In the study, scientists used a genetic research technique called a genome-wide association study that allows researchers to detect genetic variations associated with a particular disease. It was the first large application of this technique to systemic scleroderma, she said.

A genetic comparison of 2,296 people with systemic scleroderma to 5,171 without the disease led scientists to a region of the genome known as CD247. “This region contains a gene that is central to immunity, which makes this very exciting,” Mayes said.

Findings were confirmed during a second test involving 2,753 people with systemic scleroderma and 4,569 without systemic scleroderma. Participants were from the United States, Spain, Germany and The Netherlands.

Frank C. Arnett, M.D., one of the senior authors and professor at the UT Medical School at Houston, said research shows that scleroderma shares many susceptibility genes with lupus and other autoimmune diseases. This means that one day researchers may be able to more specifically target the causative pathways in each of these conditions, he said. He is the Elizabeth Bidgood Chair in Rheumatology and the Linda K. Finger Chair in Autoimmune and Connective Tissue Diseases at the UT Medical School at Houston.

The study also confirmed the link between systemic scleroderma and three other previously discovered areas of the genome - MHC, IRF5 and STAT4, Mayes said.

Building on this research, Mayes said scientists now plan to conduct a second study involving patients recruited from 10 scleroderma centers in the United States and Canada. “This will allow us to examine the findings more closely,” she said.

According to the Scleroderma Foundation, the word “scleroderma” comes from two Greek words: “sclero” meaning hard, and “derma” meaning skin. Hardening of the skin is one of the most visible manifestations of the disease. The symptoms of scleroderma vary greatly from individual to individual, and the effects of scleroderma can range from very mild to life-threatening. The seriousness will depend on what parts of the body are affected and the extent to which they are affected.

Peggy Brown, who is the vice president of the Texas Bluebonnet Chapter of the Scleroderma Foundation, is heartened by the research. “If they can figure out what causes it, they can find a cure,” Brown said.

The president of the Texas Bluebonnet Chapter, Cindi Brannum, said that because healthcare providers do not know what causes scleroderma, treatments are focused on symptoms. “We’re using other people’s medicine to treat our disease. There is no specific scleroderma treatment,” she said.

Forty-three-year-old scleroderma patient Shannon Abert, who was part of the study, said, “Scleroderma affects everyone differently. About the only thing we all share is Raynaud’s syndrome, which is discoloration of the fingers, and acid reflux.”

Also contributing to the study from the Division of Rheumatology at the UT Medical School at Houston were: Sandeep Agarwal, M.D., Ph.D., assistant professor; Shervin Assassi, M.D., assistant professor; Pravitt Gourh, M.D., internal medicine resident; and Filemon Tan, MD., Ph.D., associate professor.

Olga Y. Gorlova, Ph.D., associate professor in the Department of Epidemiology at The University of Texas M. D. Anderson Cancer Center, was also one of the senior authors.

The study, which is titled “Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus,” received support from the National Institutes of Health.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>