Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study reveals how cannabis suppresses immune functions

25.11.2010
Cannabis compounds found to trigger unique immune cells which promote cancer growth

An international team of immunologists studying the effects of cannabis have discovered how smoking marijuana can trigger a suppression of the body's immune functions. The research, published in the European Journal of Immunology, reveals why cannabis users are more susceptible to certain types of cancers and infections.

The team, led by Dr Prakash Nagarkatti from the University of South Carolina, focused their research on cannabinoids, a group of compounds found inside the cannabis plant, including THC (delta-9 tetahydrocannabinol) which is already used for medical purposes such as pain relief.

"Cannabis is one of the most widely used drugs of abuse worldwide and it is already believed to suppress immune functions making the user more susceptible to infections and some types of cancer," said Dr Nagarkatti. "We believe the key to this suppression is a unique type of immune cell, which has only recently been identified by immunologists, called myeloid-derived suppressor cells, MDSCs."

While most immune cells fight against infections and cancers to protect the host, MDSCs actively suppress the immune system. The presence of these cells is known to increase in cancer patients and it is believed that MDSCs may suppress the immune system against cancer therapy, actually promoting cancer growth.

Dr Nagarkatti's team demonstrated that cannabinoids can trigger a massive number of MDSCs through activation of cannabinoid receptors. This research reveals, for the first time, that marijuana cannabinoids may suppress the immune system by activating these unique cells.

"These results raise interesting questions on whether increased susceptibility to certain types of cancers or infections caused from smoking marijuana results from induction of MDSCs," said Nagarkatti. "MDSCs seem to be unique and important cells that may be triggered by inappropriate production of certain growth factors by cancer cells or other chemical agents such as cannabinoids, which lead to a suppression of the immune system's response."

In a related study, also published in the European journal of Immunology, Dr Christian Vosshenrich from the Institut Pasteur in Paris, reveals that when cancer cells grow they produce a molecule called interleukin-1 â (IL-1â), which also triggers MDSCs. This study identifies how MDSCs produced during cancer growth also weaken the ability of immune cells to kill cancer cells.

"Marijuana cannabinoids present us with a double edged sword," concluded Dr Nagarkatti. "On one hand, due to their immunosuppressive nature, they can cause increased susceptibility to cancer and infections. However, further research of these compounds could provide opportunities to treat a large number of clinical disorders where suppressing the immune response is actually beneficial."

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>