Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study reveals how cannabis suppresses immune functions

25.11.2010
Cannabis compounds found to trigger unique immune cells which promote cancer growth

An international team of immunologists studying the effects of cannabis have discovered how smoking marijuana can trigger a suppression of the body's immune functions. The research, published in the European Journal of Immunology, reveals why cannabis users are more susceptible to certain types of cancers and infections.

The team, led by Dr Prakash Nagarkatti from the University of South Carolina, focused their research on cannabinoids, a group of compounds found inside the cannabis plant, including THC (delta-9 tetahydrocannabinol) which is already used for medical purposes such as pain relief.

"Cannabis is one of the most widely used drugs of abuse worldwide and it is already believed to suppress immune functions making the user more susceptible to infections and some types of cancer," said Dr Nagarkatti. "We believe the key to this suppression is a unique type of immune cell, which has only recently been identified by immunologists, called myeloid-derived suppressor cells, MDSCs."

While most immune cells fight against infections and cancers to protect the host, MDSCs actively suppress the immune system. The presence of these cells is known to increase in cancer patients and it is believed that MDSCs may suppress the immune system against cancer therapy, actually promoting cancer growth.

Dr Nagarkatti's team demonstrated that cannabinoids can trigger a massive number of MDSCs through activation of cannabinoid receptors. This research reveals, for the first time, that marijuana cannabinoids may suppress the immune system by activating these unique cells.

"These results raise interesting questions on whether increased susceptibility to certain types of cancers or infections caused from smoking marijuana results from induction of MDSCs," said Nagarkatti. "MDSCs seem to be unique and important cells that may be triggered by inappropriate production of certain growth factors by cancer cells or other chemical agents such as cannabinoids, which lead to a suppression of the immune system's response."

In a related study, also published in the European journal of Immunology, Dr Christian Vosshenrich from the Institut Pasteur in Paris, reveals that when cancer cells grow they produce a molecule called interleukin-1 â (IL-1â), which also triggers MDSCs. This study identifies how MDSCs produced during cancer growth also weaken the ability of immune cells to kill cancer cells.

"Marijuana cannabinoids present us with a double edged sword," concluded Dr Nagarkatti. "On one hand, due to their immunosuppressive nature, they can cause increased susceptibility to cancer and infections. However, further research of these compounds could provide opportunities to treat a large number of clinical disorders where suppressing the immune response is actually beneficial."

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>