Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study reveals cancer-linked epigenetic effects of smoking

For the first time, UK scientists have reported direct evidence that taking up smoking results in epigenetic changes associated with the development of cancer.

The results were reported at the 35th Congress of the European Society for Medical Oncology (ESMO) in Milan, Italy.

The link between smoking and cancer has been established for decades, explained Dr Yuk Ting Ma from the Cancer Research UK Institute of Cancer Studies, Birmingham, who presented the results. Smoking is the single biggest cause of cancer in the world, and years of research have confirmed that carcinogenic substances in tobacco smoke can damage DNA.

Scientists have also suspected that smoking causes so-called epigenetic changes, such as methylation, which alter gene expression without causing changes to the actual DNA sequence.

"Until now, however, there has been no direct evidence that smoking induces DNA methylation in humans," Dr Ma said. "Cross-sectional surveys restricted to patients with cancer have revealed that aberrant methylation of several tumor suppressor genes is associated with smoking. But such surveys cannot distinguish those epigenetic changes that are a consequence of the disease process from those which are directly attributable to smoking."

In a study funded by Cancer Research UK, the British team set out to clarify the link between smoking and methylation in a cohort of 2,011 healthy young women aged 15-19 who were originally recruited as part of a study of pre-cancerous changes to cells of the cervix.

"For this particular study we have identified all the women from that cohort who had normal smears and who also tested negative for human papillomavirus throughout follow-up," Dr Ma explained. "In this subgroup of disease-free women we have then tested the cervical smears of all the women who first started to smoke following study entry for p16 methylation, and compared them to women who were never smokers."

The researchers selected this group of women to ensure there were no potential cofounding factors for the detection of p16 methylation in otherwise healthy young women.

The particular gene the researchers were studying was p16, a so-called tumor suppressor gene. When it is methylated, this gene's normal tumor-suppressing function is inactivated.

"DNA methylation is a type of epigenetic change that can result in tumor suppressor genes being inactivated," said Dr Ma. "Methylation of p16 has been frequently associated with the development of cancer in many parts of the body."

Because the women were all taking part in a study of cervical neoplasia, Dr Ma used cells from cervical smears to test for methylation of p16. Her group found that women who took up smoking during the study were more than three times as likely (odds ratio of 3.67) to acquire p16 methylation.

"Our study showed that compared with never-smokers, women who first started to smoke during follow-up had an increased risk of acquiring methylation of p16," Dr Ma said. "Our choice of study design and our study population allowed us to reveal, for the first time, the relationship between starting to smoke and the subsequent appearance of an epigenetic change."

The results provide evidence that smoking does induce DNA methylation, Dr Ma said. "The next step is now to show that women who acquire such smoking-induced methylation have an increased risk of developing malignancy."

Notes to Editors

Contact the ESMO Press Office at to find out:

How to follow press briefings remotely via toll-free dial-in
How to schedule one-on-one interviews with top speakers, presenters of the studies and ESMO key opinion leaders

The Congress full program is available at

Media registration

On-site registration is possible at the Press Registration Desk. You will be asked for your press card and a letter of assignment.

About the European Society for Medical Oncology

The European Society for Medical Oncology (ESMO) is the leading European professional organization committed to advancing the specialty of medical oncology and promoting a multidisciplinary approach to cancer treatment and care.

ESMO's mission is to advance cancer care and cure through fostering and disseminating good science that leads to better medicine and determines best practice. In this way ESMO fulfils its goal to support oncology professionals in providing people with cancer with the most effective treatments available and the high-quality care they deserve.

The ESMO community is a powerful alliance of more than 6,000 committed oncology professionals from over 100 countries. As a trusted organization with 35 years of experience and over 500 expert officers, ESMO serves its members and the oncology community through: a brand of excellence in post-graduate oncology education and training; leadership in transforming evidence-based research into standards of cancer care in Europe; dedicated efforts to foster a more favorable environment for scientific research; innovative international platforms to share expertise, best practices and disseminate the most up-to-date scientific research to as wide an audience as possible.

ESMO's scientific journal, Annals of Oncology, ranks among the top clinical oncology journals worldwide. ESMO events are the meeting place in Europe for medical oncologists to update their knowledge, to network and to exchange ideas.

To find our more about our Society, please visit:

Vanessa Pavinato | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>