Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reveals Brain Differences Between Humans and Chimpanzees Linked to Aging

27.07.2011
Decrease in Brain Volume of Humans Seen as Unique Distinction Between Species

Chimpanzees, the closest living relatives to humans, do not experience a decrease in brain volume as they age like humans do, according to a study by George Washington University researcher Chet Sherwood and his colleagues.

There are many similarities between the species, but this discovery reveals an important distinction, demonstrating how humans are unique from other animals. The study “Aging of the Cerebral Cortex Differs Between Humans and Chimpanzees” is the first study of its kind in this field and will be published in the “Proceedings of the National Academy of Sciences” on July 25, 2011.

“Although other animals experience some cognitive impairment and brain atrophy as they age, it appears that human aging is marked by more dramatic degeneration,” said Dr. Sherwood, associate professor of anthropology in GW’s Columbian College of Arts and Sciences.

The researchers used magnetic resonance imaging (MRI) to measure the volume of the whole brain and numerous specific internal structures using a sample of 99 chimpanzee brains ranging from 10-51 years of age. This data were compared to brain structure volumes measured in 87 humans ranging from 22-88 years of age.

Measurements of the neocortical gray and white matter, frontal lobe gray and white matter and the hippocampus were performed. In contrast to humans, who showed a decrease in the volume of all brain structures over the lifespan, chimpanzees did not display significant age-related changes. Furthermore, the effects of aging in humans were only evident after the maximum age of chimpanzees. As a result, the researchers concluded that the brain shrinkage seen in human aging is evolutionarily novel and is the result of an extended lifespan.

The hippocampus, the area of the brain responsible for encoding new memories and maintaining spatial navigation, was of specific interest to the researchers, as this area is especially vulnerable to age-associated atrophy in humans. In addition, the hippocampus is the region of the brain most prominently affected by Alzheimer’s disease (AD), an illness that is only seen in primarily older humans. AD is a form of dementia that is associated with a loss of brain function, impacting memory, thinking and behavior. AD is a result of neurodegeneration, which is the progressive loss of structure or function of neurons, including the death of neurons. The unique vulnerability seen in humans to develop AD may be in part due to the human tendency to show more pronounced brain atrophy than any other species, even in normal, healthy aging.

“What’s really unusual for humans is the combination of an extremely long life and a large brain,” said Dr. Sherwood. “While there are certainly benefits to both of these adaptations, it seems that more intense decline in brain volume in the elderly of our species is a cost.”

Established in 1821 in the heart of the nation’s capital, the George Washington University Columbian College of Arts and Sciences is the largest of GW’s academic units. It encompasses the School of Media and Public Affairs, the Trachtenberg School of Public Policy and Public Administration and more than 40 departments and programs for undergraduate, graduate and professional studies. The Columbian College provides the foundation for GW’s commitment to the liberal arts and a broad education for all students. An internationally recognized faculty and active partnerships with prestigious research institutions place Columbian College at the forefront in advancing policy, enhancing culture and transforming lives through research and discovery.

In the heart of the nation's capital with additional programs in Virginia, the George Washington University was created by an Act of Congress in 1821. Today, GW is the largest institution of higher education in the District of Columbia. The university offers comprehensive programs of undergraduate and graduate liberal arts study, as well as degree programs in medicine, public health, law, engineering, education, business and international affairs. Each year, GW enrolls a diverse population of undergraduate, graduate and professional students from all 50 states, the District of Columbia and more than 130 countries.

Jill Sankey | Newswise Science News
Further information:
http://www.gwu.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>