Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals how a common virus eludes the immune system

01.09.2009
Cytomegalovirus shuts down antiviral defenses by destroying MHC I protein

Viruses have numerous tricks for dodging the immune system. In the September 7, 2009 issue of the Journal of Cell Biology, Stagg et al. reveal a key detail in one of these stratagems, identifying a protein that enables cytomegalovirus to shut down an antiviral defense (online August 31).

Cytomegalovirus, which most people contract at some point in their lives, eludes immune system surveillance by targeting the protein MHC I. When we're sick, MHC I captures bits of viral proteins and presents them to cytotoxic T cells, which respond by killing cells that harbor the virus, stanching the infection.

However, two cytomegalovirus genes dupe cells into ubiquitinating MHC I and demolishing it in the proteasome, the cellular garbage disposal. To trigger MHC I ubiquitination, the genes co-opt a cellular protein called the E3 ligase. Researchers haven't been able to pin down the identity of this protein, which could be one of several hundred enzymes.

Stagg et al. sifted 373 candidates by depleting them one by one with RNAi. Knocking down a ligase called TRC8 spared MHC I from destruction, the team found. Mutant versions of TRC8 that curtail ubiquitination allow MHC I to return to duty. Researchers know little about the function of the protein except that it is mutated in some rare hereditary and sporadic kidney tumors. That result suggests that one of the normal targets of TRC8 helps spur cancer.

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org.

Stagg, H.R., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200906110.

Rita Sullilvan | EurekAlert!
Further information:
http://www.rupress.org
http://www.jcb.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>