Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reports on declines in ecosystem productivity fueled by nitrogen-induced species loss

04.07.2013
Humans have been affecting their environment since the ancestors of Homo sapiens first walked upright, but never has their impact been more detrimental than in the 21st century.

"The loss of biodiversity has much greater and more profound ecosystem impacts than had ever been imagined," said David Tilman, professor of ecology, biodiversity and ecosystem functioning at UC Santa Barbara's Bren School of Environmental Science & Management.


Caption: This is the Cedar Creek Ecosystem Science Reserve in central Minnesota where the study took place. Credit: Forest Isbell

Human-driven environmental disturbances, such as increasing levels of reactive nitrogen and carbon dioxide (CO2), have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. Pieces of this puzzle have been widely examined but this new study puts it all together by examining multiple elements. The results were published July 1 in the Proceedings of the National Academy of Sciences.

According to the team's recent findings, adding nitrogen to grasslands led to an initial increase in ecosystem productivity. However, that increase proved unsustainable because the increased nitrogen resulted in a loss of plant diversity. "In combination with earlier studies, our results show that the loss of biodiversity, no matter what might cause it, is a major driver of ecosystem functioning," said Tilman.

The study analyzed 30 years of field data from the Nitrogen Enrichment Experiment in order to determine the temporal effect of nitrogen enrichment on the productivity, plant diversity, and species composition of naturally assembled grasslands at the Cedar Creek Ecosystem Science Reserve in central Minnesota. The results showed that while nitrogen enrichment initially increased plant productivity, eventually this effect declined, especially in the plots that received the most fertilizer. These returns diminished over time because fertilizing also drove declines in plant diversity.

In fact, the continuous addition of nitrogen fertilizer led to a loss of the dominant native perennial grass, Schizachyrium scoparium, which decreased productivity twice as much as did random species loss in a nearby biodiversity experiment. In contrast, elevated CO2 didn't decrease or change grassland plant diversity in any way and consistently promoted productivity over time.

According to the authors, previous studies have underestimated the impact of biodiversity on ecosystem functioning. "Many people expect that only rare or subordinate species will be lost and that their loss will have negligible effects on ecosystem functioning," says lead author Forest Isbell, a postdoctoral associate in the Department of Ecology, Evolution & Behavior at the University of Minnesota in Saint Paul. "But we found that the most common species were lost under fertilization, creating a substantial decrease in productivity over time."

Furthermore, the results of this study show that changes in biodiversity can be important intermediary drivers of the long-term effects of human-caused environmental changes on ecosystem functioning. For example, accounting for the effects of nitrogen on plant diversity could improve predictions of the long-term impacts of nitrogen on productivity. While the researchers expect their results will be relevant in other ecosystems, they also hope to explore the practical implications of their results for sustaining forage yields in diverse pastures and hay meadows. In particular, they hope to determine whether maintaining plant diversity over time can sustain the productivity of these managed grasslands.

This research was supported by grants from Department of Energy Program for Ecosystem Research, the Department of Energy National Institute for Climatic Change Research, the National Science Foundation Long-Term Ecological Research Program, the National Science Foundation Biocomplexity Coupled Biogeochemical Cycles Program, the National Science Foundation Long-Term Research in Environmental Biology Program, and by the University of Minnesota.

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>