Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reinforces link between obesity, high-fat meals and heart disease

18.02.2011
The effect of a high-fat meal on blood vessel walls can vary among individuals depending on factors such as their waist size and triglyceride levels, suggests new research at UC Davis.

The new research reinforces the link between belly fat, inflammation and thickening of the arterial linings that can lead to heart disease and strokes.

Triglycerides are types of fat molecules, commonly associated with “bad cholesterol,” known to increase risk of inflammation of the endothelium, the layer of cells that lines arteries.

“The new study shows that eating a common fast food meal can affect inflammatory responses in the blood vessels," said Anthony Passerini, assistant professor of biomedical engineering at UC Davis, who led the project.

"Our techniques allowed us to measure the inflammatory potential of an individual’s lipids outside of the body and to correlate that with easily measured characteristics that could be used to help better understand a person’s risk for vascular disease,” Passerini said.

Passerini collaborated with Scott Simon, professor of biomedical engineering at UC Davis, to develop cell culture models to mimic the properties of blood vessels. They wanted to learn how triglyceride levels can cause endothelial inflammation, and find a way to assess an individual’s inflammatory potential.

They recruited 61 volunteers with high and normal fasting triglyceride levels and a range of waist sizes, then measured levels of triglyceride particles in their blood after they ate a typical fast food breakfast from a major fast food franchise: two breakfast sandwiches, hash browns and orange juice.

Passerini's team found that after eating the high-fat meal, the size of a type of a particle called triglyceride-rich lipoprotein (TGRL) varied directly with the individual’s waist size and preexisting blood triglyceride level. These particles can bind to the endothelium, triggering inflammation and an immune response that brings white blood cells to repair the damage. Over time, this leads to atherosclerosis.

The researchers tested whether TGRL particles from the volunteers' blood could cause cultured endothelial cells in the laboratory to express markers for inflammation.

There was a mixed response: individuals with both a waist size over 32 inches (not terribly large by most standards) and high triglyceride levels had large lipoprotein particles that bound easily to the endothelial cells and caused inflammation in response to an immune chemical “trigger.”

The TGRLs only caused inflammation when exposed to this immune molecule, which suggests that people with existing low-grade inflammation may be more susceptible to endothelial dysfunction related to triglyceride “spikes” that occur after eating high-fat meals, Passerini said.

In people who are predisposed, repeated episodes of inflammation could lead to atherosclerosis. Passerini's lab is continuing to investigate how abdominal obesity, high triglyceride levels and inflammation can lead to atherosclerosis.

The findings are published online in the journal American Journal of Physiology - Heart and Circulatory Physiology. The other authors of the paper, all at the UC Davis Department of Biomedical Engineering, are: graduate student Ying Wang, staff researcher John Schulze, clinical coordinator Nadine Raymond, and undergraduates Tyler Tomita and Kayan Tam. The work was funded by grants from the National Institutes of Health and a fellowship from the Howard Hughes Medical Institute to Wang.

Media contact(s):
Anthony Passerini, Biomedical Engineering, (530) 754-6715, agpasserini@ucdavis.edu

Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>