Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study questions hypothermia treatment for cardiac arrest

19.11.2013
Therapeutic hypothermia – cooling the body and brain down to 33°C – is the method used worldwide to treat cardiac arrest, even though a lower body temperature may raise the risk of side-effects. However, keeping the temperature steady at 36°C is just as effective, a study led by Lund University researchers has found.

"Our results show that it is just as effective – both for survival and recovery of neurological function – to focus on avoiding the fever that accompanies cardiac arrest. We don't need to cool down the body and brain to 33°C. This is of course important because cooling to lower temperatures brings a higher risk of infection, bleeding and other side-effects", said Niklas Nielsen, researcher at Lund University and first author of the study.

Patients who come into hospital in cardiac arrest receive intensive care with cooling and ventilator treatment. Around half of them survive. Daily life goes quite well for those who survive, but around 30 per cent of cardiac arrest patients suffer impaired cognitive function, for example poorer memory.

"Until now, there has not been a clear place in the health service for the rehabilitation of these patients and one of our most important tasks is to identify them and tailor rehabilitation treatment to them. The median age for cardiac arrest is just over 60, and there are quite a lot of younger people who are affected. Rehabilitation can mean the difference between being able to go back to work and remaining on sick leave", said Niklas Nielsen.

The researchers are planning to analyse the patient data in more detail to see if there may be groups of patients for whom cooling could be beneficial and whether it has an impact at a more detailed cognitive level.

About the study:

The new research results are based on 10 years of data collection that has culminated in the study presented today – the largest international clinical study on patients ever. It has been carried out at 36 hospitals in 10 countries in Europe and in Australia, and includes 950 patients between 2010 and 2013. The main objective of the study was to investigate the optimal temperature for hypothermia treatment of patients in cardiac arrest, and to investigate the neurological function and quality of life of survivors after discharge from hospital.

The study was led by researchers from Lund University, Helsingborg Hospital and Skåne University Hospital – Niklas Nielsen, Hans Friberg, Tobias Cronberg and David Erlinge – together with an international steering group.

The research project has involved strong collaboration with Rigshospitalet in Copenhagen and has resulted in the establishment of a joint centre by Lund University, Skåne University Hospital, Helsingborg Hospital and Region Huvudstaden in Copenhagen.

Publication:

'Targeted Temperature Management Cardiac Arrest', New England Journal of Medicine

Niklas Nielsen, Jørn Wetterslev, Tobias Cronberg, David Erlinge, Yvan Gasche, Christian Hassager, Janneke Horn, Jan Hovdenes, Jesper Kjaergaard, Michael Kuiper, Tommaso Pellis, Pascal Stammet, Michael Wanscher, Matt P. Wise, Anders Åneman, Nawaf Al-Subaie, Søren Boesgaard, John Bro-Jeppesen, Iole Brunetti, Jan Frederik Bugge, Christopher D. Hingston, Nicole P. Juffermans, Matty Koopmans, Lars Køber, Jørund Langørgen, Gisela Lilja, Jacob Eifer Møller, Malin Rundgren, Christian Rylander, Ondrej Smid, Christophe Werer, Per Winkel, and Hans Friberg for the TTM Trial Investigators

Background:

The origin of the extensive study is the criticism of the two studies that was made when they were first published in 2002. The criticism that was made, with which Niklas Nielsen and his colleagues in Lund agree, was that:
the method was not sufficiently tested on a large number of patients and in different patient groups

no assessment was made of whether the effect of the treatment was due to the removal of the fever or to the cooling itself

The results have been presented today in the New England Journal of Medicine, and at the American Heart Association meeting in Dallas.

Contact:

Niklas Nielsen, consultant and researcher, Lund University
+46 708 89 97 70
Niklas.Nielsen@med.lu.se
WATCH VIDEO STORY: http://bit.ly/1jhaNg8

Niklas Nielsen | EurekAlert!
Further information:
http://www.lu.se

Further reports about: Medicine cardiac arrest neurological function

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>