Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study provides new approach to forecast hurricane intensity


UM Rosenstiel School scientists offer new information to help improve tropical storm forecasting

New research from University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science suggests that physical conditions at the air-sea interface, where the ocean and atmosphere meet, is a key component to improve forecast models. The study offers a new method to aid in storm intensity prediction of hurricanes.

SUrge-STructure-Atmosphere INteraction (SUSTAIN) Laboratory

This is the one-of-a-kind, Alfred C. Glassell, Jr., SUSTAIN research facility at the UM Rosenstiel School of Marine and Atmospheric Science, where Haus and colleagues will conduct further studies on hurricane intensity prediction.

Credit: UM Rosenstiel School of Marine and Atmospheric Science

"The general assumption has been that the large density difference between the ocean and atmosphere makes that interface too stable to effect storm intensity," said Brian Haus, UM Rosenstiel School professor of ocean sciences and co-author of the study. "In this study we show that a type of instability may help explain rapid intensification of some tropical storms."

Experiments conducted at the UM Rosenstiel School Air-Sea Interaction Salt Water Tank (ASIST) simulated the wind speed and ocean surface conditions of a tropical storm. The researchers used a technique called "shadow imaging," where a guided laser is sent through the two fluids – air and water – to measure the physical properties of the ocean's surface during extreme winds, equivalent to a category-3 hurricane.

Using the data obtained from the laboratory experiments conducted with the support of the Gulf of Mexico Research Initiative (GOMRI) through the CARTHE Consortium, the researchers then developed numerical simulations to show that changes in the physical stress at the ocean surface at hurricane force wind speeds may explain the rapid intensification of some tropical storms.

The research team's experimental simulations show that the type of instability, known as Kelvin-Helmoltz instability, could explain this intensification.

Haus and colleagues will conduct further studies on hurricane intensity prediction in the new, one-of-a-kind Alfred C. Glassell, Jr., SUSTAIN research facility located at the UM Rosenstiel School. The SUrge-STructure-Atmosphere INteraction laboratory is the only facility capable of creating category-5 level hurricanes in a controlled, seawater laboratory.

The nearly 65-foot long tank allows scientists to simulate major hurricanes using a 3-D wave field to expand research on the physics of hurricanes and the associated impacts of severe wind-driven and wave-induced storm surges on coastal structures.

The SUSTAIN research facility is the centerpiece of the new $45 million Marine Technology and Life Sciences Seawater Complex at the UM Rosenstiel School where scientists from around the world have access to state-of-the-art seawater laboratories to conduct an array of marine-related research.

The study, titled "The air-sea interface and surface stress under tropical cyclones" was published in the June 16 issue of the journal Nature Scientific Reports. The paper's lead author was Alex Soloviev of the UM Rosenstiel School and Nova Southeastern University Oceanographic Center and its co-authors include: Mark A. Donelan from the UM Rosenstiel School; Roger Lukas of the University of Hawaii; and Isaac Ginis from the University of Rhode Island.


About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit:

Diana Udel | Eurek Alert!

Further reports about: Marine Science air-sea Interface atmosphere hurricane storms tropical

More articles from Studies and Analyses:

nachricht New Formula for Life-Satisfaction
01.10.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Carbon storage in soils: Climate vs. Geology
14.09.2015 | Universität Augsburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Im Focus: 3-D printing techniques help surgeons carve new ears

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework...

Im Focus: Walk the line

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Infrared thermography can detect joint inflammation and help improving work ergonomics

02.10.2015 | Medical Engineering

Semiconductor nanoparticles show high luminescence in a polymer matrix

02.10.2015 | Materials Sciences

New Sinumerik features improve productivity and precision

02.10.2015 | Trade Fair News

More VideoLinks >>>