Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study proposes alternative way to explain life's complexity

15.04.2013
Evolution skeptics argue that some biological structures, like the brain or the eye, are simply too complex for natural selection to explain. Biologists have proposed various ways that so-called 'irreducibly complex' structures could emerge incrementally over time, bit by bit. But a new study proposes an alternative route.

Instead of starting from simpler precursors and becoming more intricate, say authors Dan McShea and Wim Hordijk, some structures could have evolved from complex beginnings that gradually grew simpler — an idea they dub "complexity by subtraction." Computer models and trends in skull evolution back them up, the researchers show in a study published this week in the journal Evolutionary Biology.

Some biological structures are too dizzyingly complex to have emerged stepwise by adding one part and then the next over time, intelligent design advocates say. Consider the human eye, or the cascade that causes blood to clot, or the flagellum, the tiny appendage that enables some bacteria to get around. Such all-or-none structures, the argument goes, need all their parts in order to function. Alter or take away any one piece, and the whole system stops working. In other words, what good is two thirds of an eye, or half of a flagellum?

For the majority of scientists, the standard response is to point to simpler versions of supposedly 'irreducibly complex' structures that exist in nature today, such as cup eyes in flatworms. Others show how such structures could have evolved incrementally over millions of years from simpler precursors. A simple eye-like structure — say, a patch of light-sensitive cells on the surface of the skin — could evolve into a camera-like eye like what we humans and many other animals have today, biologists say.

"Even a very simple eye with a small number of parts would work a little. It would be able to detect shadows, or where light is coming from," said co-author Dan McShea of Duke University.

In a new study, McShea and co-author Wim Hordijk propose an alternative route. Instead of emerging by gradually and incrementally adding new genes, cells, tissues or organs over time, what if some so-called 'irreducibly complex' structures came to be by gradually losing parts, becoming simpler and more streamlined? Think of naturally occurring rock arches, which start as cliffs or piles of stone and form when bits of stone are weathered away. They call the principle 'complexity by subtraction.'

"Instead of building up bit by bit from simple to complex, you start complex and then winnow out the unnecessary parts, refining them and making them more efficient as you go," McShea said.

A computer model used by co-author Wim Hordijk supports the idea. In the model, complex structures are represented by an array of cells, some white and some black, like the squares of a checkerboard. In this class of models known as cellular automata, the cells can change between black and white according to a set of rules.

Using a computer program that mimics the process of inheritance, mutation, recombination, and reproduction, the cells were then asked to perform a certain task. The better they were at accomplishing the task, the more likely they were to get passed on to the next generation, and over time a new generation of rules replaced the old ones. In the beginning, the patterns of black and white cells that emerged were quite complex. But after several more generations, some rules 'evolved' to generate simpler black and white cell patterns, and became more efficient at performing the task, Hordijk said.

We see similar trends in nature too, the authors say. Summarizing the results of previous paleontological studies, they show that vertebrate skulls started out complex, but have grown simpler and more streamlined. "For example, the skulls of fossil fish consist of a large number of differently-shaped bones that cover the skull like a jigsaw puzzle," McShea said. "We see a reduction in the number of skull bone types in the evolutionary transitions from fish to amphibian to reptile to mammal." In some cases skull bones were lost; in other cases adjacent bones were fused. Human skulls, for example, have fewer bones than fish skulls.

Computer simulations like Hordijk's will allow scientists to test ideas about how often 'complexity by subtraction' happens, or how long it takes. The next step is to find out how often the phenomenon happens in nature.

"What we need to do next is pick an arbitrary sample of complex structures and trace their evolution and see if you can tell which route they proceeded by, [from simple to complex or the opposite]. That will tell us whether this is common or not," McShea added.

CITATION: McShea, D. and W. Hordijk (2013). "Complexity by subtraction." Evolutionary Biology. http://dx.doi.org/10.1007/s11692-013-9227-6

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit http://www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>