Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study predicts future consequences of a global biofuels program

23.10.2009
Carbon emissions caused by the displacement of food crops and pastures may be twice as much as those from lands devoted to biofuels production

A report examining the impact of a global biofuels program on greenhouse gas emissions during the 21st century has found that carbon loss stemming from the displacement of food crops and pastures for biofuels crops may be twice as much as the CO2 emissions from land dedicated to biofuels production.

The study, led by Marine Biological Laboratory (MBL) senior scientist Jerry Melillo, also predicts that increased fertilizer use for biofuels production will cause nitrous oxide emissions (N2O) to become more important than carbon losses, in terms of warming potential, by the end of the century.

Using a global modeling system that links economic and biogeochemistry data, Melillo, MBL research associate David Kicklighter, and their colleagues examined the effects of direct and indirect land-use on greenhouse gas emissions as the production of biofuels increases over this century. They report their findings in the October 22 issue of Science Express.

Direct land-use emissions are generated from land committed solely to bioenergy production. Indirect land-use emissions occur when biofuels production on cropland or pasture displaces agricultural activity to another location, causing additional land-use changes and a net increase in carbon loss.

No major countries currently include carbon emissions from biofuel-related land-use changes in their carbon loss accounting and there is concern about the practicality of including such losses in a system designed to reduce fossil-fuel emissions. Moreover, methods to assess indirect land-use emissions are controversial. All quantitative analyses to date have either ignored indirect emissions altogether, considered those associated from crop displacement from a limited area, confused indirect emissions with direct or general land-use emissions, or developed estimates based on a static framework of today's economy.

Using a modeling system that integrates global land-use change driven by multiple demands for land and that includes dynamic greenhouse-gas accounting, Melillo and his colleagues factored in a full suite of variables, including the potential of net carbon uptake from enhanced land management, N2O emissions from the increased use of fertilizer, environmental effects on carbon storage, and the economics of land conversion.

"Our analysis, which we think is the most comprehensive to date, shows that direct and indirect land-use changes associated with an aggressive global biofuels program have the potential to release large quantities of greenhouse gases to the atmosphere," says Melillo.

Melillo and his colleagues simulated two global land-use scenarios in the study. In Case 1, natural areas are converted to meet increased demand for biofuels production land. In Case 2, there is less willingness to convert land and existing managed land is used more intensely. Both scenarios are linked to a global climate policy that would control greenhouse gas emissions from fossil fuel sources to stabilize CO2 concentrations at 550 parts per million, a target often talked about in climate policy discussions. Under such a climate policy, fossil fuel use would become more expensive and the introduction of biofuels would accelerate, ultimately increasing the size of the biofuels industry and causing additional effects on land use, land prices, and food and forestry production and prices.

The model predicts that, in both scenarios, land devoted to biofuels will become greater than the total area currently devoted to crops by the end of the 21st century. Case 1 will result in more carbon loss than Case 2, especially at mid-century. In addition, indirect land use will be responsible for substantially greater carbon losses (up to twice as much) than direct land use.

"Large greenhouse gas emissions from these indirect land-use changes are unintended consequences of a global biofuels program; consequences that add to the climate-change problem rather than helping to solve it," says Melillo "As our analysis shows, these unintended consequences are largest when the clearing of forests is involved."

In their model, Melillo and his colleagues also simulated N2O emissions from the additional fertilizer that will be required to grow biofuel crops in the future. They found that over the century, N2O emissions will surpass CO2 in terms of warming potential. By 2100, Melillo and his team estimate that in both study scenarios, biofuels production will account for more than half of the total N2O emissions from fertilizer. "Best practices for the use of nitrogen fertilizer, such as synchronizing fertilizer application with plant demand, can reduce N2O emissions associated with biofuels production," the scientists say.

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, it is the oldest private marine laboratory in the Americas.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>