Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study predicts effect of global warming on spring flowers

21.09.2009
An international study involving Monash University mathematician Dr Malcolm Clark has been used to demonstrate the impact of global warming and to predict the effect further warming will have on plant life.

The study, published in the International Journal of Climatology, predicts a difference in flowering times of certain plants in certain climates by as much as 50 days by the year 2080.

The study, by Dr Malcolm Clark, an Adjunct Research Fellow at Monash University's School of Mathematical Sciences and Professor Roy Thompson, a geophysicist at the University of Edinburgh in Scotland, investigated the possibilities of flowering spring plants blooming in the depths of winter as the plants respond to the effects of global warming.

The study is based on the facts that plants control the timing of flowering by adapting to the local weather and climate and that throughout the past century global warming, driven by ever rising atmospheric carbon dioxide concentrations, has resulted in local climate changes which are likely to steadily increase.

"Already there is a great deal of observational evidence of regional changes in climate associated with global warming," Dr Clark said. "We have not only seen an earlier break up of ice on rivers and melting glaciers, but earlier flowering of plants. This new model allows us to refine predictions of the future impact of warming on plant and animal life across much of the world."

Dr Clark and Professor Thompson worked from a wealth of old records from the Royal Botanic Garden Edinburgh, which started in 1850. They also analysed records of Edinburgh's climate from records dating back to 1775. With this information they investigated the responses of 79 species of plant to air temperatures.

Using this data, they established the relationship between air temperature and first flowering date and have used their new statistical model to predict likely changes in spring flowering in Scotland based on three potential global warming scenarios. For every 1 o C that the climate warms they predict that spring flowering will begin approximately 11 days earlier. For an increasingly oceanic climate (greater winter than summer warming) their model predicts shifts in the botanical season ranging between 16 days at the start of spring and 12 days at the end of spring. For an increasingly continental climate predictions range between 7 days at the start of spring and 11 days at the end of spring.

Clark and Thompson checked the results of their statistical model with other data sets from across the world, indicating that their results are not limited to one country. "Although the study is based on plant life in Scotland, our phenological models apply across regions spanning hundreds of thousands of square kilometres," Dr Clark said.

Using their results Dr Clark and Professor Thompson have been able to construct a global map demonstrating 'desynchronisation' of plant and animal life in the year 2080. The map shows that maritime climates including Western Europe, the American Atlantic coast, New Zealand, Chile and North Africa will be the greatest effected as the botanical calendar will move strongly out of sync with the seasons with temperature-sensitive plants flowering up to 50 days earlier than now, with significant ecological repercussions.

For more information or to arrange an interview, contact Samantha Blair Media & Communications +61 3 9903 4841 or 0439 013 951.

Samantha Blair | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>