Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study predicts effect of global warming on spring flowers

An international study involving Monash University mathematician Dr Malcolm Clark has been used to demonstrate the impact of global warming and to predict the effect further warming will have on plant life.

The study, published in the International Journal of Climatology, predicts a difference in flowering times of certain plants in certain climates by as much as 50 days by the year 2080.

The study, by Dr Malcolm Clark, an Adjunct Research Fellow at Monash University's School of Mathematical Sciences and Professor Roy Thompson, a geophysicist at the University of Edinburgh in Scotland, investigated the possibilities of flowering spring plants blooming in the depths of winter as the plants respond to the effects of global warming.

The study is based on the facts that plants control the timing of flowering by adapting to the local weather and climate and that throughout the past century global warming, driven by ever rising atmospheric carbon dioxide concentrations, has resulted in local climate changes which are likely to steadily increase.

"Already there is a great deal of observational evidence of regional changes in climate associated with global warming," Dr Clark said. "We have not only seen an earlier break up of ice on rivers and melting glaciers, but earlier flowering of plants. This new model allows us to refine predictions of the future impact of warming on plant and animal life across much of the world."

Dr Clark and Professor Thompson worked from a wealth of old records from the Royal Botanic Garden Edinburgh, which started in 1850. They also analysed records of Edinburgh's climate from records dating back to 1775. With this information they investigated the responses of 79 species of plant to air temperatures.

Using this data, they established the relationship between air temperature and first flowering date and have used their new statistical model to predict likely changes in spring flowering in Scotland based on three potential global warming scenarios. For every 1 o C that the climate warms they predict that spring flowering will begin approximately 11 days earlier. For an increasingly oceanic climate (greater winter than summer warming) their model predicts shifts in the botanical season ranging between 16 days at the start of spring and 12 days at the end of spring. For an increasingly continental climate predictions range between 7 days at the start of spring and 11 days at the end of spring.

Clark and Thompson checked the results of their statistical model with other data sets from across the world, indicating that their results are not limited to one country. "Although the study is based on plant life in Scotland, our phenological models apply across regions spanning hundreds of thousands of square kilometres," Dr Clark said.

Using their results Dr Clark and Professor Thompson have been able to construct a global map demonstrating 'desynchronisation' of plant and animal life in the year 2080. The map shows that maritime climates including Western Europe, the American Atlantic coast, New Zealand, Chile and North Africa will be the greatest effected as the botanical calendar will move strongly out of sync with the seasons with temperature-sensitive plants flowering up to 50 days earlier than now, with significant ecological repercussions.

For more information or to arrange an interview, contact Samantha Blair Media & Communications +61 3 9903 4841 or 0439 013 951.

Samantha Blair | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>