Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may help predict extinction tipping point for species

09.09.2010
What if there were a way to predict when a species was about to become extinct—in time to do something about it?

Findings from a study by John M. Drake, associate professor in the University of Georgia Odum School of Ecology, and Blaine D. Griffen, assistant professor at the University of South Carolina, may eventually lead to such an outcome—and that is only the start. Their study also has implications for understanding drastic, even catastrophic, changes in many other kinds of complex systems, from the human brain to entire ecosystems.

The paper, "Early warning signals of extinction in deteriorating environments," published in the early online edition of the journal Nature, describes a study of the fluctuations in experimental populations of water fleas (Daphnia magna) undergoing environmental stress until they reach a tipping point beyond which they do not remain viable. The study is unique in its careful comparison of these stressed populations with other, healthy populations in the context of new theories about dynamic systems undergoing transitions at a tipping point, particularly a phenomenon known as "critical slowing down."

"This is the first experimental demonstration of critical slowing down in a biological system," said Drake. He explained that critical slowing down is a term used to describe a pattern in data that has previously been observed in physics and the Earth sciences, but until now has been only a theoretical possibility in biology. It describes the decreasing rate of recovery from small disturbances to a system as it approaches a tipping point. When a system is close to a tipping point, it can take a long time to recover from even a very small disturbance. "The theory was originally used to describe drastic changes in other kinds of systems—everything from epileptic seizures to regime shifts in the earth's climate system," Drake said. "But these attributions of CSD primarily have been after-the-fact explanations of anomalous observations without clear controls."

This also is the first time the theory has been applied to extinction.

The experiment featured populations of water fleas that were assigned to either deteriorating environments (in this case, declining levels of food) or stable environments (the control group). The experiment lasted for 416 days, when the last population in the deteriorating environment group became extinct. Depending upon the amount of food they received, populations in the deteriorating environment group reached the population viability tipping point after approximately 300 days. Populations in the control group never reached it; those populations persisted.

The researchers next looked at a variety of statistical indicators, early warning signals that could detect the onset of CSD and thereby predict the approach to a tipping point. They compared the indicators with the timing of the decrease in food and with the achievement of the tipping point, mathematically referred to as a "transcritical bifurcation." They found that each of the indicators—some more strongly than others—showed evidence of the approaching tipping point well before it was reached.

According to Drake, what is even more important is the generality such statistical indicators are expected to exhibit. That is, although precise quantitative models are required to predict most natural phenomena—in any domain of science—with any degree of accuracy, the theory of critical slowing down applies qualitatively anytime a bifurcation is in the vicinity. "You don't have to know the underlying equations to use the theory," Drake said, "and this is important in biology, where the dynamics are typically sufficiently complex that we often do not know which equations to use. In fact, we may never come to such a complete understanding, given the range of biodiversity out there and the fact that species are evolving all the time."

Drake pointed out that potential applications, such as predicting extinctions based on evidence of CSD, are still in the future. "This is the first step in the fundamental research that would underlie such an application," he said. "We have shown that CSD can happen in populations—that is all. The real world is a lot 'noisier' than the lab. Using early warning signals to predict approaching tipping points could eventually be a powerful tool for conservation planning, though, and for better understanding a host of other kinds of systems as well."

John Gittleman, dean of the Odum School of Ecology, agreed. "This study fits into one of the core missions of the Odum School by developing a predictive science of ecology," he said. "We now have clear, predictive research programs dealing with extinction, conservation, and disease, all critically important areas for a more robust science of ecology."

John M. Drake | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: Biodiversity CSD Ecology Odum science of ecology water fleas

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>