Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study may help predict extinction tipping point for species

09.09.2010
What if there were a way to predict when a species was about to become extinct—in time to do something about it?

Findings from a study by John M. Drake, associate professor in the University of Georgia Odum School of Ecology, and Blaine D. Griffen, assistant professor at the University of South Carolina, may eventually lead to such an outcome—and that is only the start. Their study also has implications for understanding drastic, even catastrophic, changes in many other kinds of complex systems, from the human brain to entire ecosystems.

The paper, "Early warning signals of extinction in deteriorating environments," published in the early online edition of the journal Nature, describes a study of the fluctuations in experimental populations of water fleas (Daphnia magna) undergoing environmental stress until they reach a tipping point beyond which they do not remain viable. The study is unique in its careful comparison of these stressed populations with other, healthy populations in the context of new theories about dynamic systems undergoing transitions at a tipping point, particularly a phenomenon known as "critical slowing down."

"This is the first experimental demonstration of critical slowing down in a biological system," said Drake. He explained that critical slowing down is a term used to describe a pattern in data that has previously been observed in physics and the Earth sciences, but until now has been only a theoretical possibility in biology. It describes the decreasing rate of recovery from small disturbances to a system as it approaches a tipping point. When a system is close to a tipping point, it can take a long time to recover from even a very small disturbance. "The theory was originally used to describe drastic changes in other kinds of systems—everything from epileptic seizures to regime shifts in the earth's climate system," Drake said. "But these attributions of CSD primarily have been after-the-fact explanations of anomalous observations without clear controls."

This also is the first time the theory has been applied to extinction.

The experiment featured populations of water fleas that were assigned to either deteriorating environments (in this case, declining levels of food) or stable environments (the control group). The experiment lasted for 416 days, when the last population in the deteriorating environment group became extinct. Depending upon the amount of food they received, populations in the deteriorating environment group reached the population viability tipping point after approximately 300 days. Populations in the control group never reached it; those populations persisted.

The researchers next looked at a variety of statistical indicators, early warning signals that could detect the onset of CSD and thereby predict the approach to a tipping point. They compared the indicators with the timing of the decrease in food and with the achievement of the tipping point, mathematically referred to as a "transcritical bifurcation." They found that each of the indicators—some more strongly than others—showed evidence of the approaching tipping point well before it was reached.

According to Drake, what is even more important is the generality such statistical indicators are expected to exhibit. That is, although precise quantitative models are required to predict most natural phenomena—in any domain of science—with any degree of accuracy, the theory of critical slowing down applies qualitatively anytime a bifurcation is in the vicinity. "You don't have to know the underlying equations to use the theory," Drake said, "and this is important in biology, where the dynamics are typically sufficiently complex that we often do not know which equations to use. In fact, we may never come to such a complete understanding, given the range of biodiversity out there and the fact that species are evolving all the time."

Drake pointed out that potential applications, such as predicting extinctions based on evidence of CSD, are still in the future. "This is the first step in the fundamental research that would underlie such an application," he said. "We have shown that CSD can happen in populations—that is all. The real world is a lot 'noisier' than the lab. Using early warning signals to predict approaching tipping points could eventually be a powerful tool for conservation planning, though, and for better understanding a host of other kinds of systems as well."

John Gittleman, dean of the Odum School of Ecology, agreed. "This study fits into one of the core missions of the Odum School by developing a predictive science of ecology," he said. "We now have clear, predictive research programs dealing with extinction, conservation, and disease, all critically important areas for a more robust science of ecology."

John M. Drake | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: Biodiversity CSD Ecology Odum science of ecology water fleas

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>