Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study pinpoints new role of molecule in the health of body's back-up blood circulation

26.05.2010
When the arteries delivering oxygen to our vital organs are obstructed by atherosclerosis or clots, the result is almost always a stroke, heart attack or damage to a peripheral tissue such as the legs (peripheral artery disease).

t the severity of tissue injury or destruction from a choked-off blood supply varies from person to person, and may depend in large part on whose circulatory system has the best back-up plan to provide alternate routes of circulation.

This "back-up system" – called the collateral circulation – involves a small number of tiny specialized blood vessels, called collaterals, that can enlarge their diameters enough to carry significant flow and thus bypass a blockage.

Researchers at the University of North Carolina at Chapel Hill School of Medicine have now discovered that the abundance of these vessels in a healthy individual and their growth or remodeling into "natural bypass vessels" depends on how much of a key signaling molecule -- called nitric oxide -- is present.

The study, conducted in animal models, suggests that nitric oxide not only is critical in maintaining the number of collateral vessels while individuals are healthy. It also is key in the amount of collateral vessel remodeling that occurs when obstructive disease strikes.

The research findings recently appeared online in the journal Circulation Research and will be published in the print edition on June 25th. They could one day enable researchers to predict people's risk for catastrophic stroke, myocardial infarction, or peripheral artery disease. Such knowledge could inform individuals with poor collateral capacity to adopt a lifestyle that can help reduce their chances of getting diseases that could further lower their number of collateral vessels.

"If you've got a good number of these natural bypass vessels, you have something of an 'insurance policy' that favors you suffering less severe consequences if you get atherosclerosis or thrombotic disease" said senior study author James E. Faber, Ph.D., professor of cell and molecular physiology at UNC.

"And if you were born with very few, the last thing you would want to do is subject yourself to environmental factors that might further cut down the number of these vessels." Faber also is a member of the McAllister Heart Institute at UNC. Earlier this year, his team reported that these vessels form early in life and that genetic background has a major impact on how many you end up with.

The factors that put people at risk for developing stroke, heart attack, or peripheral artery disease include the usual suspects -- smoking, diabetes, hypertension, high cholesterol, family history, age. But until recently, researchers didn't know what linked those risk factors together, when it comes to insufficiency of the collateral circulation.

Faber says studies have shown that all of these factors cause the endothelial cells that line our blood vessels to produce less nitric oxide, a "wonder molecule" that protects our vasculature from disease. Now, he says, his group's findings indicate that this molecule is also a critical factor maintaining the health of the collateral circulation.

So Faber and lead study author Xuming Dai, M.D., Ph.D., of UNC's departments of medicine and physiology, wondered whether collateral vessels would be lost if the levels of nitric oxide were suppressed. They counted the number of these vessels in the brains of mice genetically engineered to lack the enzyme – called eNOS -- that makes most of the nitric oxide in blood vessel walls.

The researchers found that from the ages of three months to six months (equivalent to about twenty-one to forty-five years of age in humans) there was a 25 percent reduction in the number of collateral vessels in the mutant mice as compared to normal ones. They also saw the same percentage decrease in collateral vessels supplying the legs, where they were trying to model peripheral artery disease.

Next, the investigators wanted to know if a lack of nitric oxide would affect the way that existing collaterals respond to an obstruction in a main artery.

By blocking an artery in the legs of these genetically engineered mice, Faber and Dai were able to reroute circulation through the collateral vessels. Over a period of 2-3 weeks, the flow of detoured blood usually causes the little collaterals to enlarge their diameters by 3 to 4 fold through a process called collateral remodeling. But the researchers found that such remodeling was impaired in the mutant mice that produced less nitric oxide when compared to their normal counterparts.

In the first such experiment of its kind, Dai then succeeded in surgically removing these tiny collaterals from the mice and scanned their entire genomes for differences between the mutant and normal rodents that might explain this variation in remodeling.

"The only category of genes that was dramatically different between the two was the cell cycle control genes, genes that are involved in the proliferation of cells in the vascular wall—a process that's required for collaterals to remodel," said Dai, a clinical cardiology fellow receiving basic science training in Faber's laboratory. "This is an important function of eNOS that had not been discovered before."

Faber says that possessing a variant form of the eNOS gene that results in loss of collaterals may be one more item on the list of risk factors for cardiovascular disease. There is already evidence that healthy people may vary up to ten-fold in the abundance of their collateral circulation, so the trick may be figuring out a way to upgrade that back-up plan for those who are lacking.

"If we can figure out how these unique vessels are made and maintained in healthy tissues, we hope we can then uncover how to induce them to be made with treatments in patients who don't have enough," Faber said.

The UNC research was funded by the National Heart, Lung and Blood Institute of the National Institutes of Health.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>