Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study pinpoints new role of molecule in the health of body's back-up blood circulation

26.05.2010
When the arteries delivering oxygen to our vital organs are obstructed by atherosclerosis or clots, the result is almost always a stroke, heart attack or damage to a peripheral tissue such as the legs (peripheral artery disease).

t the severity of tissue injury or destruction from a choked-off blood supply varies from person to person, and may depend in large part on whose circulatory system has the best back-up plan to provide alternate routes of circulation.

This "back-up system" – called the collateral circulation – involves a small number of tiny specialized blood vessels, called collaterals, that can enlarge their diameters enough to carry significant flow and thus bypass a blockage.

Researchers at the University of North Carolina at Chapel Hill School of Medicine have now discovered that the abundance of these vessels in a healthy individual and their growth or remodeling into "natural bypass vessels" depends on how much of a key signaling molecule -- called nitric oxide -- is present.

The study, conducted in animal models, suggests that nitric oxide not only is critical in maintaining the number of collateral vessels while individuals are healthy. It also is key in the amount of collateral vessel remodeling that occurs when obstructive disease strikes.

The research findings recently appeared online in the journal Circulation Research and will be published in the print edition on June 25th. They could one day enable researchers to predict people's risk for catastrophic stroke, myocardial infarction, or peripheral artery disease. Such knowledge could inform individuals with poor collateral capacity to adopt a lifestyle that can help reduce their chances of getting diseases that could further lower their number of collateral vessels.

"If you've got a good number of these natural bypass vessels, you have something of an 'insurance policy' that favors you suffering less severe consequences if you get atherosclerosis or thrombotic disease" said senior study author James E. Faber, Ph.D., professor of cell and molecular physiology at UNC.

"And if you were born with very few, the last thing you would want to do is subject yourself to environmental factors that might further cut down the number of these vessels." Faber also is a member of the McAllister Heart Institute at UNC. Earlier this year, his team reported that these vessels form early in life and that genetic background has a major impact on how many you end up with.

The factors that put people at risk for developing stroke, heart attack, or peripheral artery disease include the usual suspects -- smoking, diabetes, hypertension, high cholesterol, family history, age. But until recently, researchers didn't know what linked those risk factors together, when it comes to insufficiency of the collateral circulation.

Faber says studies have shown that all of these factors cause the endothelial cells that line our blood vessels to produce less nitric oxide, a "wonder molecule" that protects our vasculature from disease. Now, he says, his group's findings indicate that this molecule is also a critical factor maintaining the health of the collateral circulation.

So Faber and lead study author Xuming Dai, M.D., Ph.D., of UNC's departments of medicine and physiology, wondered whether collateral vessels would be lost if the levels of nitric oxide were suppressed. They counted the number of these vessels in the brains of mice genetically engineered to lack the enzyme – called eNOS -- that makes most of the nitric oxide in blood vessel walls.

The researchers found that from the ages of three months to six months (equivalent to about twenty-one to forty-five years of age in humans) there was a 25 percent reduction in the number of collateral vessels in the mutant mice as compared to normal ones. They also saw the same percentage decrease in collateral vessels supplying the legs, where they were trying to model peripheral artery disease.

Next, the investigators wanted to know if a lack of nitric oxide would affect the way that existing collaterals respond to an obstruction in a main artery.

By blocking an artery in the legs of these genetically engineered mice, Faber and Dai were able to reroute circulation through the collateral vessels. Over a period of 2-3 weeks, the flow of detoured blood usually causes the little collaterals to enlarge their diameters by 3 to 4 fold through a process called collateral remodeling. But the researchers found that such remodeling was impaired in the mutant mice that produced less nitric oxide when compared to their normal counterparts.

In the first such experiment of its kind, Dai then succeeded in surgically removing these tiny collaterals from the mice and scanned their entire genomes for differences between the mutant and normal rodents that might explain this variation in remodeling.

"The only category of genes that was dramatically different between the two was the cell cycle control genes, genes that are involved in the proliferation of cells in the vascular wall—a process that's required for collaterals to remodel," said Dai, a clinical cardiology fellow receiving basic science training in Faber's laboratory. "This is an important function of eNOS that had not been discovered before."

Faber says that possessing a variant form of the eNOS gene that results in loss of collaterals may be one more item on the list of risk factors for cardiovascular disease. There is already evidence that healthy people may vary up to ten-fold in the abundance of their collateral circulation, so the trick may be figuring out a way to upgrade that back-up plan for those who are lacking.

"If we can figure out how these unique vessels are made and maintained in healthy tissues, we hope we can then uncover how to induce them to be made with treatments in patients who don't have enough," Faber said.

The UNC research was funded by the National Heart, Lung and Blood Institute of the National Institutes of Health.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>