Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study pinpoints and plugs mechanism of AML cancer cell escape

19.01.2012
A study published this week in the journal Leukemia identifies a mechanism that acute myeloid leukemia (AML) cells use to evade chemotherapy – and details how to close this escape route.
“Introducing chemotherapy to cells is like putting a curve in front of a speeding car,” says Christopher Porter, MD, investigator at the University of Colorado Cancer Center and assistant professor of pediatrics at the University of Colorado School of Medicine. “Cells that can put on the brakes make it around the corner and cells that can’t speed off the track.”

Porter and colleagues collaborated with James DeGregori, PhD, CU Cancer Center investigator and professor of biochemistry and molecular genetics at the CU School of Medicine to define a molecular braking process that AML cells use to survive the curves of chemotherapy. They also showed that when this molecular brake is removed, AML cells (but not their healthy neighbors) die on the corners.

The discovery of this escape route and how to plug it provides hope for survival for a greater proportion of the estimated 12,950 people diagnosed with AML every year in the United States.

The group’s findings rely on the relatively new technique of functional genomic screening of AML cells, accomplished by the CU Cancer Center Functional Genomics Shared Resource at the University of Colorado Boulder.

Using techniques they developed, the group turned off a different gene in each of a population of AML cells all at once. Then they hit all cells with chemotherapy traditionally used for AML. The goal: to see which genes, when turned off, would make the cells especially susceptible to chemo.

In this study, which generated over 30 million data points, cells that lacked a gene to make something called WEE1 died in disproportionate numbers. When you turn off WEE1, cancer cells die.

“WEE1 is the brakes,” Porter says. “With chemotherapy we introduce DNA damage in cancer cells – we push them toward the curve hopefully at a greater rate than healthy cells. If WEE1 is there, cancer cells can round the curve. Without it, they flip.”

Hidden in Porter’s words is an element that makes this an especially exciting finding: AML cells may be more dependent than are healthy cells on WEE1. And so when you inhibit WEE1, you strip the brakes from cancer cells but not their healthy neighbors, killing AML cells but leaving healthy cells able to corner on rails.

“I’m optimistic that this will eventually lead to a therapeutic regimen that allows us to target AML cells that have escaped conventional therapies,” Porter says.

Porter calls the team’s initial results combining a drug that inhibits WEE1 with chemotherapy in mouse models of AML, “extremely promising.”

“In light of these data, we are already early in the clinical trial planning process,” Porter says.

This work was supported by the Colorado Golfers Against Cancer and the AMC Cancer Fund, the Leukemia and Lymphoma Society, and the National Cancer Institute through the University of Colorado Cancer Center (3P30CA046934-22S).

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: AML Cancer Colorado river Medicine WEE1 cancer cells healthy cell leukemia molecular genetic mouse model

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>