Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study outlines economic and environmental benefits to reducing nitrogen pollution

29.07.2011
Emissions credit system is a win-win for wastewater treatment plants

A new study co-authored by Columbia Engineering professor Kartik Chandran and recently published in the journal, Environmental Science & Technology, shows that reducing nitrogen pollution generated by wastewater treatment plants can come with "sizable" economic benefits, as well as the expected benefits for the environment.

Chandran was one of five scientists from around the U.S. who worked on the study, along with James Wang of NOAA's Air Resources Laboratory and formerly of Environmental Defense Fund (EDF); Steve Hamburg, Chief Scientist for EDF; Donald Pryor of Brown University; and Glen Daigger of CH2M Hill, a global environmental engineering firm based in Englewood, Colorado.

The study found that adding available technology to the existing infrastructure at a common type of wastewater treatment plant could create a trifecta of reductions in aquatic nitrogen pollution, greenhouse gas pollution, and energy usage. It also found that creating an emissions crediting system for the wastewater treatment sector could make the addition of new technologies much more affordable.

"As wastewater permits on wastewater treatment plants become more and more restrictive, the resultant increased capital and operating costs can pose quite a burden to utilities and municipalities," said Chandran, associate professor of earth and environmental engineering. "Our study shows that, if the reduced emissions associated with well-designed and operated biological nitrogen removal operations can be used to earn CO2 credits, then this could be a big benefit both for the utilities from a cost perspective and for the environment from water quality and air quality perspectives."

The majority of wastewater treatment plants already have systems to reduce ammonia levels in effluent, but pay relatively little attention to overall nitrogen pollution reduction, especially in the form of nitrous oxide (N2O), a potent greenhouse gas. Using emissions credits to address the problem could create an economic incentive of up to $600 million per year for U.S. plants to reduce nitrogen pollution, with the added benefit of up to $100 million per year in electricity savings if they do so.

"Recent N2O monitoring studies conducted by Columbia Engineering and research groups across the globe have found that meeting wastewater treatment objectives actually decreases biogenic N2O emissions," added Chandran. "So designing and adopting better process technologies for improving water quality could actually have a significant impact on reduced N2O emissions."

"Our study shows that there's a win-win-win situation out there waiting to be realized," said James Wang, the chief author of the paper. "The creation of an emissions trading market could provide the needed incentive for wastewater treatment plants to adopt technologies that would reduce climate pollution, help clean up our waterways, and even save energy and money."

Chandran's research focuses primarily on biological nitrogen removal from wastewater, sustainable water sanitation and hygiene (WASH), and developing new technologies for resource recovery and reuse from waste. His team recently created the first protocol to measure nitrous oxide (a greenhouse gas 300 times more potent than CO2). Using the protocol, his Columbia Engineering group developed the first nationwide database of N2O emissions from wastewater treatment plants. The database has now been adopted by the U.S. Environmental Protection Agency as the standard to estimate N2O emissions from wastewater treatment plants. Chandran is also working towards developing and implementing "energy-positive" wastewater treatment technologies that will produce energy rather than consume it at some of the largest wastewater utilities in the U.S.

Chandran was recently awarded a $1.5 million project grant from the Bill & Melinda Gates Foundation to develop a revolutionary new model in water, sanitation, and energy. Working with his partners Dr. Ashley Murray, founder and director of Waste Enterprisers, and Dr. Moses Mensah, a chemical engineering professor at Kwame Nkrumah University of Science and Technology, Chandran is developing an innovative technology to transform fecal sludge into biodiesel and create the "Next-Generation Urban Sanitation Facility" in Accra, Ghana.

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF- and NIH-funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges. http://www.engineering.columbia.edu/

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>