Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study outlines economic and environmental benefits to reducing nitrogen pollution

Emissions credit system is a win-win for wastewater treatment plants

A new study co-authored by Columbia Engineering professor Kartik Chandran and recently published in the journal, Environmental Science & Technology, shows that reducing nitrogen pollution generated by wastewater treatment plants can come with "sizable" economic benefits, as well as the expected benefits for the environment.

Chandran was one of five scientists from around the U.S. who worked on the study, along with James Wang of NOAA's Air Resources Laboratory and formerly of Environmental Defense Fund (EDF); Steve Hamburg, Chief Scientist for EDF; Donald Pryor of Brown University; and Glen Daigger of CH2M Hill, a global environmental engineering firm based in Englewood, Colorado.

The study found that adding available technology to the existing infrastructure at a common type of wastewater treatment plant could create a trifecta of reductions in aquatic nitrogen pollution, greenhouse gas pollution, and energy usage. It also found that creating an emissions crediting system for the wastewater treatment sector could make the addition of new technologies much more affordable.

"As wastewater permits on wastewater treatment plants become more and more restrictive, the resultant increased capital and operating costs can pose quite a burden to utilities and municipalities," said Chandran, associate professor of earth and environmental engineering. "Our study shows that, if the reduced emissions associated with well-designed and operated biological nitrogen removal operations can be used to earn CO2 credits, then this could be a big benefit both for the utilities from a cost perspective and for the environment from water quality and air quality perspectives."

The majority of wastewater treatment plants already have systems to reduce ammonia levels in effluent, but pay relatively little attention to overall nitrogen pollution reduction, especially in the form of nitrous oxide (N2O), a potent greenhouse gas. Using emissions credits to address the problem could create an economic incentive of up to $600 million per year for U.S. plants to reduce nitrogen pollution, with the added benefit of up to $100 million per year in electricity savings if they do so.

"Recent N2O monitoring studies conducted by Columbia Engineering and research groups across the globe have found that meeting wastewater treatment objectives actually decreases biogenic N2O emissions," added Chandran. "So designing and adopting better process technologies for improving water quality could actually have a significant impact on reduced N2O emissions."

"Our study shows that there's a win-win-win situation out there waiting to be realized," said James Wang, the chief author of the paper. "The creation of an emissions trading market could provide the needed incentive for wastewater treatment plants to adopt technologies that would reduce climate pollution, help clean up our waterways, and even save energy and money."

Chandran's research focuses primarily on biological nitrogen removal from wastewater, sustainable water sanitation and hygiene (WASH), and developing new technologies for resource recovery and reuse from waste. His team recently created the first protocol to measure nitrous oxide (a greenhouse gas 300 times more potent than CO2). Using the protocol, his Columbia Engineering group developed the first nationwide database of N2O emissions from wastewater treatment plants. The database has now been adopted by the U.S. Environmental Protection Agency as the standard to estimate N2O emissions from wastewater treatment plants. Chandran is also working towards developing and implementing "energy-positive" wastewater treatment technologies that will produce energy rather than consume it at some of the largest wastewater utilities in the U.S.

Chandran was recently awarded a $1.5 million project grant from the Bill & Melinda Gates Foundation to develop a revolutionary new model in water, sanitation, and energy. Working with his partners Dr. Ashley Murray, founder and director of Waste Enterprisers, and Dr. Moses Mensah, a chemical engineering professor at Kwame Nkrumah University of Science and Technology, Chandran is developing an innovative technology to transform fecal sludge into biodiesel and create the "Next-Generation Urban Sanitation Facility" in Accra, Ghana.

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF- and NIH-funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges.

Holly Evarts | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>