Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study offers first explanation of how cells rapidly repair and maintain structure

Insight may lead to better understanding of how cells respond to stress

Researchers at Huntsman Cancer Institute (HCI) at the University of Utah have discovered that a protein, zyxin, is necessary for the maintenance and repair of the cell's cytoskeleton, or internal framework, which serves as the muscle and bone of the cell. The research has implications for cancer, as well as other diseases, since alterations in the cytoskeleton are often associated with disease. The research was published in the Sep. 14, 2010, issue of the journal Developmental Cell.

"Just like people, the cells in our bodies are exposed to all kinds of stress," says Mary Beckerle, Ph.D., the study's principal investigator and HCI executive director. "One type of stress, mechanical stress that is derived from application of physical force, is experienced by many organs such as the lung, which stretches with each breath, the heart, which is physically challenged with each beat, and the uterus, which undergoes intense contractions during labor and childbirth. We were interested in how living cells respond to such stress. In this study, we showed that mechanical stress can damage the cytoskeleton but that cells have special machinery that rapidly recognizes the damage and repairs it."

Mark Smith, Ph.D., one of the HCI researchers involved in the study explains that, "When a cell's environment changes and stress is applied, cytoskeletal bundles, called actin stress fibers, can literally begin to tear, but then are rapidly repaired. This process begins within seconds and allows the cell to retain its structure. We showed that a protein called zyxin is required for the maintenance and repair of the actin cytoskeleton." Zyxin expression is down-regulated in certain cancers and future experiments will explore whether loss of this cytoskeletal repair pathway in tumor cells is responsible for the disruption of the cytoskeleton that is common in cancer cells.

The researchers studied the process by imaging live cells that expressed fluorescently tagged cytoskeletal proteins. This allowed them to observe the mechanism whereby actin stress fibers maintain homeostasis, or balance. The repair mechanism was directly triggered by force and served to relieve mechanical stress on actin stress fibers, which in turn provided a system for rapid response to force changes in the extracellular environment.

The study was funded by the National Institute of General Medical Sciences. Other HCI researchers involved in the study include Elizabeth Blankman and Laura Luettjohann. Margaret L. Gardel from the University of Chicago, and Clare M. Waterman, from the National Heart, Lung and Blood Institute, also contributed to the work.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-Designated Cancer Center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit

Linda Aagard | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>