Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers first explanation of how cells rapidly repair and maintain structure

22.09.2010
Insight may lead to better understanding of how cells respond to stress

Researchers at Huntsman Cancer Institute (HCI) at the University of Utah have discovered that a protein, zyxin, is necessary for the maintenance and repair of the cell's cytoskeleton, or internal framework, which serves as the muscle and bone of the cell. The research has implications for cancer, as well as other diseases, since alterations in the cytoskeleton are often associated with disease. The research was published in the Sep. 14, 2010, issue of the journal Developmental Cell.

"Just like people, the cells in our bodies are exposed to all kinds of stress," says Mary Beckerle, Ph.D., the study's principal investigator and HCI executive director. "One type of stress, mechanical stress that is derived from application of physical force, is experienced by many organs such as the lung, which stretches with each breath, the heart, which is physically challenged with each beat, and the uterus, which undergoes intense contractions during labor and childbirth. We were interested in how living cells respond to such stress. In this study, we showed that mechanical stress can damage the cytoskeleton but that cells have special machinery that rapidly recognizes the damage and repairs it."

Mark Smith, Ph.D., one of the HCI researchers involved in the study explains that, "When a cell's environment changes and stress is applied, cytoskeletal bundles, called actin stress fibers, can literally begin to tear, but then are rapidly repaired. This process begins within seconds and allows the cell to retain its structure. We showed that a protein called zyxin is required for the maintenance and repair of the actin cytoskeleton." Zyxin expression is down-regulated in certain cancers and future experiments will explore whether loss of this cytoskeletal repair pathway in tumor cells is responsible for the disruption of the cytoskeleton that is common in cancer cells.

The researchers studied the process by imaging live cells that expressed fluorescently tagged cytoskeletal proteins. This allowed them to observe the mechanism whereby actin stress fibers maintain homeostasis, or balance. The repair mechanism was directly triggered by force and served to relieve mechanical stress on actin stress fibers, which in turn provided a system for rapid response to force changes in the extracellular environment.

The study was funded by the National Institute of General Medical Sciences. Other HCI researchers involved in the study include Elizabeth Blankman and Laura Luettjohann. Margaret L. Gardel from the University of Chicago, and Clare M. Waterman, from the National Heart, Lung and Blood Institute, also contributed to the work.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-Designated Cancer Center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.hci.utah.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>