Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Bigeye Tuna in Northwest Atlantic Uses New Tracking Methods

01.08.2014

A first-of-its-kind study of bigeye tuna movements in the northwestern Atlantic Ocean led by Molly Lutcavage, director of the Large Pelagics Research Center at the University of Massachusetts Amherst, found among other things that these fish cover a wide geographical range with pronounced north-south movements from Georges Bank to the Brazilian shelf, and they favor a high-use area off Cape Hatteras southwest of Bermuda for foraging.

This NOAA-funded research, which used a new approach to study one of the most important commercial tuna species in the Atlantic, provides the longest available fishery-independent record of bigeye tuna movements to date. Data should help researchers to further characterize habitat use and assess the need for more monitoring in high-catch areas.


Pelagic longline vessel Captain Scott Drabinowicz and crew preparing to deploy a tag from the deck of the FV Eagle Eye II.

Results appear this week in an early online edition of the Canadian Journal of Fisheries and Aquatic Science.

Fisheries oceanographer Lutcavage says, “Although Atlantic bigeye tuna are delivering high prices to the U.S. commercial fleet and are highly sought by recreational fishermen and fishing tournaments, there’s been a surprising lack of scientific research on this species.

And in contrast to the Pacific, where tuna fisheries programs have deployed over 400,000 tags over 25 years, the Atlantic lacks the fisheries infrastructure that would increase the odds of recovering tags. We have to rely on popup satellite tags that are fishery independent to make sure we get information back from the tuna.”

Two earlier electronic tagging studies by others yielded relatively short tracking data, 113 days or fewer, and did not allow for seasonal analysis of movement or exploration of an alternate stock composition hypotheses, Lutcavage and colleagues note. Bigeye are currently managed as a single Atlantic stock, she explains, and the greater resolution of habitat use and migratory behavior revealed in this study are important first steps towards determining whether or not a more complex management approach may be warranted.

Working with pelagic longline vessel captains Scott Drabinowicz and John Caldwell of the FV Eagle Eye II out of Fairhaven, Mass., Lutcavage, with LPRC colleagues Tim Lam and doctoral candidate Ben Galuardi, deployed 21 pop-up satellite archival tags (PSAT) on adult bigeye tuna between 2008 and 2010 in the northwest Atlantic.

The sea captains fit tags on fish in good condition and return them to the sea. The PSATs were programmed to record relative light level, temperature and pressure (depth) every two minutes for eight or 12 months.

Lutcavage, Lam and Galuardi were able to collect full-resolution time series data from a total of nine tags, providing data ranging from one to 292 days. The team also downloaded remote sensing and climatological information from the NOAA to characterize possible associations between bigeye tuna movement and behavior and environmental factors. 

Among variables they analyzed were the bigeyes’ use of the deep scattering layer for foraging. That is an ocean layer of marine life that rises and falls in relation to diurnal vertical migration. The researchers also looked at lunar influences on swimming depth, horizontal movements, plus vertical activity and factors influencing it such as temperature.

Lam explains, “Bigeye tuna dive deeply, like clockwork, at dusk and dawn, making it hard to use light-based geolocation methods to estimate their daily locations. Here, we showcase a new positioning technique to get around the problem of low light levels at depth by using temperature and the bigeyes’ spatial ecology and movements in the western Atlantic. But there’s much more to learn.”

The authors hope their results will inform the International Commission for the Conservation of Atlantic Tuna’s upcoming tagging effort and assist ICCAT scientists as they plan new research to better understand the population.

Alain Fonteneau, an emeritus scientist at France’s Institut de Recherches pour le Développement and a recognized expert member of scientific panels that manage regional tuna fisheries worldwide, called this work “fantastic.” He says, “Although we don’t see major unexpected surprises in these results, as we often see with Atlantic bluefin tuna results, this paper is the first one in the scientific literature to provide very new and very interesting results on bigeye vertical and geographical movements in the western Atlantic,” he points out.

Fonteneau adds, “Although these real observations are based on a small number of PSAT tags, they are much more comprehensive than the traditional catch-and-effort fishery data, at one time the only type available to ICCAT tuna scientists. It would clearly be of major scientific interest to develop this type of work at the scale of the entire Atlantic Ocean.”

Link

Janet Lathrop | Eurek Alert!
Further information:
http://www.umass.edu/newsoffice/article/umass-amherst-study-bigeye-tuna-northwest

Further reports about: Amherst Fisheries PSAT Tracking depth movement movements satellite species temperature tuna

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>