Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study in Nature sheds new light on planet formation

05.07.2012
A study published in the July 5 edition of the journal Nature is challenging scientists' understanding of planet formation, suggesting that planets might form much faster than previously thought or, alternatively, that stars harboring planets could be far more numerous.

The study—a collaboration between scientists at the University of Georgia; the University of California, San Diego; the University of California, Los Angeles; California State Polytechnic University and the Australian National University—began with a curious and unexpected finding: Within three years, the cloud of dust circling a young star in the Scorpius-Centaurus stellar nursery simply disappeared.

"The most commonly accepted time scale for the removal of this much dust is in the hundreds of thousands of years, sometimes millions," said study co-author Inseok Song, assistant professor of physics and astronomy in the UGA Franklin College of Arts and Sciences. "What we saw was far more rapid and has never been observed or even predicted. It tells us that we have a lot more to learn about planet formation."

Lead author Carl Melis, a postdoctoral fellow at UC San Diego, said, "It's like the classic magician's trick: Now you see it, now you don't. Only in this case we're talking about enough dust to fill an inner solar system, and it really is gone."

The scientists first identified their star of interest by examining data from the Infrared Astronomical Satellite, or IRAS, which surveyed more than 96 percent of the sky in 1983. The star, known as TYC 8241 2652 1, was surrounded by a cloud of dust that was identifiable by its distinctive radiation of infrared energy. Like a skillet absorbing heat and then radiating it, the dust cloud was absorbing energy from the central star and radiating it in the infrared range. This warm dust is thought to be the raw material from which planets form, but scientists don't have a clear understanding of how long the process takes.

The scientists observed the same star in 2008 using a mid-infrared imager at the Gemini South Observatory in Chile and again with the same ground-based telescope in 2009. The 2008 observation revealed an infrared emission pattern similar to the 1983 measurement, but something surprising happened in 2009: The infrared emission dropped by nearly two-thirds. NASA's Wide-field Infrared Survey Explorer, or WISE, looked at the same star again in 2010, and the scientists found that the dust had mostly disappeared. The scientists confirmed their findings using two additional telescopes, the Japanese AKARI telescope and the European Space Agency's Photodetector Array Camera and Spectrometer, or PACS, at the Herschel Space Observatory, and the pattern held.

"It's as if you took a conventional picture of the planet Saturn today and then came back two years later and found that its rings had disappeared," said co-author Ben Zuckerman of UC Los Angeles, who has been investigating circumstellar disks since the 1980s.

The researchers explored several different explanations for how such a large quantity of dust could disappear so rapidly, and each of their explanations challenges conventional thinking about planet formation.

Runaway accretion. The most commonly held theory of planet formation is that minute particles of dust left over after a star forms clump onto each other, first through weak electrostatic interactions and later through gravitational forces. The aggregated dust particles eventually grow to become pebble-sized and then car- to house-sized objects. Ultimately, they become planets. The timescale at which this accretion occurs has been theorized and modeled mathematically, and Song said it is commonly thought to occur over hundreds of thousands of years, a time period that spans civilizations on Earth but is an astronomical blink of an eye.

"If what we observed is related to runaway growth, then our finding suggests that planet formation is very fast and very efficient," Song said. "The implication is that if the conditions are right around a star, planet formation can be nearly instantaneous from astronomical perspective."

The star that the scientists observed is 450 light years away, however, which means any planet formed would not be visible with today's technology.

Song added that a slightly different version of the "runaway accretion" theory suggests that dust grains accrete onto the central star in a very short timescale, implying that the star effectively eliminates planet-building material. If such events occur frequently, planet formation is much less likely than previously thought.

Collisional avalanche. Another explanation for the sudden disappearance of the dust is that it was expelled from the sun's orbit. Song explained that the particles are so small—a hundred times smaller than a grain of sand—that the constant stream of photons emanating from the sun could push them away and into each other, like pinballs, until they leave the suns' orbit.

Because large clouds of dust can be formed when orbiting planets crash into each other, astronomers have often viewed the presence of such clouds as indirect evidence of unseen planets. If clouds of dust are only fleeting, however, then many more stars than previously thought could harbor planets.

"People often calculate the percentage of stars that have a large amount of dust to get a reasonable estimate of the percentage of stars with planetary systems, but if the dust avalanche model is correct, we cannot do that anymore," Song said. "Many stars without any detectable dust may have mature planetary systems that are simply undetectable."

Next steps. Like many important discoveries, the scientists' finding raises more questions than it answers. Song said his colleagues now aim to compare measurements from 1983 with data from modern telescopes to systematically search for other stars that have rapidly depleted—or replenished—their dust clouds. The goal is to understand the frequency with which these processes occur and, ultimately, to advance understanding of how planets form.

"Many astronomers may feel uncomfortable with the suggested explanations for the disappearance of the dust because each of them has non-traditional implications," Song said, "but my hope that this line of research can bring us closer to a true understanding of how planets form."

Additional authors include Joseph Rhee of California State Polytechnic University and Simon Murphy and Michael Bessell of the Australian National University.

The study was supported by the Lawrence Livermore National Laboratory, the National Science Foundation and NASA.

Inseok Song | EurekAlert!
Further information:
http://www.uga.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>