Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study in Nature sheds new light on planet formation

05.07.2012
A study published in the July 5 edition of the journal Nature is challenging scientists' understanding of planet formation, suggesting that planets might form much faster than previously thought or, alternatively, that stars harboring planets could be far more numerous.

The study—a collaboration between scientists at the University of Georgia; the University of California, San Diego; the University of California, Los Angeles; California State Polytechnic University and the Australian National University—began with a curious and unexpected finding: Within three years, the cloud of dust circling a young star in the Scorpius-Centaurus stellar nursery simply disappeared.

"The most commonly accepted time scale for the removal of this much dust is in the hundreds of thousands of years, sometimes millions," said study co-author Inseok Song, assistant professor of physics and astronomy in the UGA Franklin College of Arts and Sciences. "What we saw was far more rapid and has never been observed or even predicted. It tells us that we have a lot more to learn about planet formation."

Lead author Carl Melis, a postdoctoral fellow at UC San Diego, said, "It's like the classic magician's trick: Now you see it, now you don't. Only in this case we're talking about enough dust to fill an inner solar system, and it really is gone."

The scientists first identified their star of interest by examining data from the Infrared Astronomical Satellite, or IRAS, which surveyed more than 96 percent of the sky in 1983. The star, known as TYC 8241 2652 1, was surrounded by a cloud of dust that was identifiable by its distinctive radiation of infrared energy. Like a skillet absorbing heat and then radiating it, the dust cloud was absorbing energy from the central star and radiating it in the infrared range. This warm dust is thought to be the raw material from which planets form, but scientists don't have a clear understanding of how long the process takes.

The scientists observed the same star in 2008 using a mid-infrared imager at the Gemini South Observatory in Chile and again with the same ground-based telescope in 2009. The 2008 observation revealed an infrared emission pattern similar to the 1983 measurement, but something surprising happened in 2009: The infrared emission dropped by nearly two-thirds. NASA's Wide-field Infrared Survey Explorer, or WISE, looked at the same star again in 2010, and the scientists found that the dust had mostly disappeared. The scientists confirmed their findings using two additional telescopes, the Japanese AKARI telescope and the European Space Agency's Photodetector Array Camera and Spectrometer, or PACS, at the Herschel Space Observatory, and the pattern held.

"It's as if you took a conventional picture of the planet Saturn today and then came back two years later and found that its rings had disappeared," said co-author Ben Zuckerman of UC Los Angeles, who has been investigating circumstellar disks since the 1980s.

The researchers explored several different explanations for how such a large quantity of dust could disappear so rapidly, and each of their explanations challenges conventional thinking about planet formation.

Runaway accretion. The most commonly held theory of planet formation is that minute particles of dust left over after a star forms clump onto each other, first through weak electrostatic interactions and later through gravitational forces. The aggregated dust particles eventually grow to become pebble-sized and then car- to house-sized objects. Ultimately, they become planets. The timescale at which this accretion occurs has been theorized and modeled mathematically, and Song said it is commonly thought to occur over hundreds of thousands of years, a time period that spans civilizations on Earth but is an astronomical blink of an eye.

"If what we observed is related to runaway growth, then our finding suggests that planet formation is very fast and very efficient," Song said. "The implication is that if the conditions are right around a star, planet formation can be nearly instantaneous from astronomical perspective."

The star that the scientists observed is 450 light years away, however, which means any planet formed would not be visible with today's technology.

Song added that a slightly different version of the "runaway accretion" theory suggests that dust grains accrete onto the central star in a very short timescale, implying that the star effectively eliminates planet-building material. If such events occur frequently, planet formation is much less likely than previously thought.

Collisional avalanche. Another explanation for the sudden disappearance of the dust is that it was expelled from the sun's orbit. Song explained that the particles are so small—a hundred times smaller than a grain of sand—that the constant stream of photons emanating from the sun could push them away and into each other, like pinballs, until they leave the suns' orbit.

Because large clouds of dust can be formed when orbiting planets crash into each other, astronomers have often viewed the presence of such clouds as indirect evidence of unseen planets. If clouds of dust are only fleeting, however, then many more stars than previously thought could harbor planets.

"People often calculate the percentage of stars that have a large amount of dust to get a reasonable estimate of the percentage of stars with planetary systems, but if the dust avalanche model is correct, we cannot do that anymore," Song said. "Many stars without any detectable dust may have mature planetary systems that are simply undetectable."

Next steps. Like many important discoveries, the scientists' finding raises more questions than it answers. Song said his colleagues now aim to compare measurements from 1983 with data from modern telescopes to systematically search for other stars that have rapidly depleted—or replenished—their dust clouds. The goal is to understand the frequency with which these processes occur and, ultimately, to advance understanding of how planets form.

"Many astronomers may feel uncomfortable with the suggested explanations for the disappearance of the dust because each of them has non-traditional implications," Song said, "but my hope that this line of research can bring us closer to a true understanding of how planets form."

Additional authors include Joseph Rhee of California State Polytechnic University and Simon Murphy and Michael Bessell of the Australian National University.

The study was supported by the Lawrence Livermore National Laboratory, the National Science Foundation and NASA.

Inseok Song | EurekAlert!
Further information:
http://www.uga.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>