Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study measures single-molecule machines in action

07.07.2010
In the development of future molecular devices, new display technologies, and "artificial muscles" in nanoelectromechanical devices, functional molecules are likely to play a primary role.

Rotaxanes, one family of such molecules, are tiny, mechanically interlocked structures that consist of a dumbell-shaped molecule whose rod section is encircled by a ring. These structures behave as molecular "machines," with the ring moving along the rod from one station to another when stimulated by a chemical reaction, light or acidity.

To realize the potential of these molecular machines, however, it is necessary to understand and to measure their function at the nanoscale. Previous methods for observing their operation have involved chemical measurements in solution and studying collections of them attached to surfaces, but neither has provided an accurate picture of their function in environments that are relevant to molecular-device operation.

Now, a multidisciplinary team of researchers from UCLA, Northwestern University, UC Merced, Pennsylvania State University and Japan has succeeded in observing single-molecule interactions of bistable rotaxanes functioning in their native environment.

The team's findings are published in the current edition of the journal ACS Nano.

Led by Paul Weiss from UCLA and Fraser Stoddart from Northwestern University, the team developed a molecular design that firmly attached rotaxanes to a surface, enabling them to be individually examined in their native environment by a scanning tunneling microscope (STM). Using this technology, the researchers were able to record station changes by the rotaxanes' rings along their rods in response to electrochemical signals.

Previously, rotaxanes had to be grouped for study because of their mobility and flexibility when attached to surfaces. And because STM instruments utilize an atomically thin tip to feel out nanoscale surfaces ¯ in much the same way a blind person reads Braille ¯ the rotaxanes' flexible nature made it difficult to study them individually. The research team's molecular design, however, helped significantly reduce this flexibility.

The STM developed by the team enables much more detailed studies of molecular machines, leading to greater understanding of how they interact with their neighbors and how they might work together in nanoelectromechanical devices.

Paul Weiss, distinguished professor of chemistry and biochemistry, holds UCLA's Fred Kavli Chair in Nanosystems Sciences and is director of the California NanoSystems Institute (CNSI) at UCLA. Fraser Stoddart is the Board of Trustees Professor of Chemistry and director of the Center for the Chemistry of Integrated Systems (CCIS) at Northwestern University.

The work was funded by the National Science Foundation, the Semiconductor Research Corporation and the Kavli Foundation.

The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mike Rodewald | EurekAlert!
Further information:
http://www.cnsi.ucla.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>