Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study will make criminals sweat

16.09.2008
The inventor of a revolutionary new forensic fingerprinting technique claims criminals who eat processed foods are more likely to be discovered by police through their fingerprint sweat corroding metal.

Dr John Bond, a researcher at the University of Leicester and scientific support officer at Northamptonshire Police, said processed food fans are more likely to leave tell-tale signs at a crime scene.

Speaking before a conference on forensic science at the University of Leicester, Dr Bond said sweaty fingerprint marks made more of a corrosive impression on metal if they had a high salt content.

And he revealed he was currently in early talks with colleagues at the University of Leicester to assess whether a sweat mark left at a crime scene could be analysed to reveal a ‘sweat profile’ ie more about the type of person who left the mark.

Dr Bond, from Northamptonshire Police Scientific Support Unit is an Honorary Research Fellow at the University of Leicester’s Forensic Research Centre. He has developed a method that enables scientists to ‘visualise fingerprints’ even after the print itself has been removed. He and colleagues conducted a study into the way fingerprints can corrode metal surfaces. The technique can enhance – after firing– a fingerprint that has been deposited on a small calibre metal cartridge case before it is fired.

Dr Bond said: “On the basis that processed foods tend to be high in salt as a preservative, the body needs to excrete excess salt which comes out as sweat through the pores in our fingers.

“So the sweaty fingerprint impression you leave when you touch a surface will be high in salt if you eat a lot of processed foods -the higher the salt, the better the corrosion of the metal.”

Dr Bond added there was therefore an indirect link therefore between obesity and the chances of being caught of a crime. “Other research has drawn links between processed foods and obesity and we know that consumers of processed foods will leave better fingerprints,” he said.

Dr Bond said there was scope to take his research further and to look at the constituents of sweat itself in order to profile an individual: “We are currently in talks with the University of Leicester to see if there is scope to investigate sweat itself and whether it can identify the type of person who left that sweat mark

“This is because the amount of sweat people leave varies and the components of the sweat varies. Important for us is how the salt varies but there is potential to investigate other elements to describe the kind of person who left the mark. It would give lifestyle information that, whilst nowhere near as good as identifying individuals with their fingerprints, it is still very good for police if they have got nothing else to go on.

“This would be particularly helpful for terrorist type crimes where the nature of the incident would tend to obliterate forensic evidence. So a sweat mark on a piece of metal or bomb fragment that might be recovered from an incident might be able to provide a clue to the type of person who perpetrated the incident.”

“We would describe the study of sweat as a process of intelligent fingerprinting - using the fingerprint to tell us more about the individual rather than a simple identification.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>