Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study will make criminals sweat

16.09.2008
The inventor of a revolutionary new forensic fingerprinting technique claims criminals who eat processed foods are more likely to be discovered by police through their fingerprint sweat corroding metal.

Dr John Bond, a researcher at the University of Leicester and scientific support officer at Northamptonshire Police, said processed food fans are more likely to leave tell-tale signs at a crime scene.

Speaking before a conference on forensic science at the University of Leicester, Dr Bond said sweaty fingerprint marks made more of a corrosive impression on metal if they had a high salt content.

And he revealed he was currently in early talks with colleagues at the University of Leicester to assess whether a sweat mark left at a crime scene could be analysed to reveal a ‘sweat profile’ ie more about the type of person who left the mark.

Dr Bond, from Northamptonshire Police Scientific Support Unit is an Honorary Research Fellow at the University of Leicester’s Forensic Research Centre. He has developed a method that enables scientists to ‘visualise fingerprints’ even after the print itself has been removed. He and colleagues conducted a study into the way fingerprints can corrode metal surfaces. The technique can enhance – after firing– a fingerprint that has been deposited on a small calibre metal cartridge case before it is fired.

Dr Bond said: “On the basis that processed foods tend to be high in salt as a preservative, the body needs to excrete excess salt which comes out as sweat through the pores in our fingers.

“So the sweaty fingerprint impression you leave when you touch a surface will be high in salt if you eat a lot of processed foods -the higher the salt, the better the corrosion of the metal.”

Dr Bond added there was therefore an indirect link therefore between obesity and the chances of being caught of a crime. “Other research has drawn links between processed foods and obesity and we know that consumers of processed foods will leave better fingerprints,” he said.

Dr Bond said there was scope to take his research further and to look at the constituents of sweat itself in order to profile an individual: “We are currently in talks with the University of Leicester to see if there is scope to investigate sweat itself and whether it can identify the type of person who left that sweat mark

“This is because the amount of sweat people leave varies and the components of the sweat varies. Important for us is how the salt varies but there is potential to investigate other elements to describe the kind of person who left the mark. It would give lifestyle information that, whilst nowhere near as good as identifying individuals with their fingerprints, it is still very good for police if they have got nothing else to go on.

“This would be particularly helpful for terrorist type crimes where the nature of the incident would tend to obliterate forensic evidence. So a sweat mark on a piece of metal or bomb fragment that might be recovered from an incident might be able to provide a clue to the type of person who perpetrated the incident.”

“We would describe the study of sweat as a process of intelligent fingerprinting - using the fingerprint to tell us more about the individual rather than a simple identification.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>