Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links delay of gratification to how brain structures are connected

05.06.2015

The ability to delay gratification in chimpanzees is linked to how specific structures of the brain are connected and communicate with each other, according to researchers at Georgia State University and Kennesaw State University.

Their findings were published June 3 in the Proceedings of the Royal Society B: Biological Sciences.

This study provides the first evidence in primates, including humans, of an association between delay of gratification performance and white matter connectivity between the caudate and the dorsal prefrontal cortex in the right hemisphere, said Dr. Robert Latzman, assistant professor in the Department of Psychology at Georgia State, who led the study with Dr. William Hopkins, professor of neuroscience at Georgia State.


Pictured are a series of 12 serial views of a chimpanzee's brain, projecting from the base of the brain, showing the white matter connectivity between the caudate and the dorsal prefrontal cortex. The scans were projected onto a standard chimpanzee template brain.

Credit: The Royal Society

The researchers found higher white matter connectivity between the caudate and dorsal prefrontal cortex in the right hemisphere of the brain was associated with the learning of delay of gratification.

Delay of gratification, the need to control emotional and behavioral impulses, is one of the earliest demands placed on individuals and is of critical importance, Latzman said.

"Delay of gratification or self-control is core to a number of different types of mental illnesses, most notably ADHD (attention deficit/hyperactivity disorder)," said Latzman. "This ability and the developmental process that occurs when children learn to delay gratification and inhibit an immediate want for a longer-term goal is a hugely important developmental milestone."

There is a considerable need for understanding connections among brain regions associated with delay of gratification abilities, such as the two regions that showed significant results in this study, Latzman said.

The task used to measure delay of gratification in chimpanzees in this study is a parallel task to that used in a series of famous experiments conducted by psychologist Walter Mischel at Stanford University in the 1960s and 1970s. Preschoolers were placed alone in a room furnished with a small desk and on the desk were two marshmallows and a bell. The researcher told the child he had to leave the room, but when he returned, the child could eat both marshmallows. If the child wanted to eat one marshmallow before the researcher returned, the child could ring the bell and eat one, but not both. When the researcher shut the door, some children ate the marshmallow right away and others tried to distract themselves, according to The New York Times.

In follow-up studies, Mischel found that delay of gratification abilities at age 4 can predict a number of behaviors into adolescence and adulthood, including planning and reasoning abilities, control of negative emotions, standardized test scores, higher educational attainment, better coping abilities, fewer interpersonal difficulties, less substance use and higher self-esteem and self-worth more than 20 years later, according to Latzman.

The current study involved 49 chimpanzees that were trained to perform a delay of gratification task. Researchers placed grapes in a transparent PVC pipe with a closed bottom and trained the chimpanzees to delay gratification in receiving the grapes. The study used chimpanzees because their self-control abilities, as compared to other model species such as monkeys, closely resemble those of human children and both their neuroanatomy and neural development are quite similar to humans. They also share a very high degree of genetic overlap, Latzman said.

"We trained them to learn that if they waited, the one grape becomes two grapes and two grapes become three grapes and three grapes become four grapes and so on. There's variability in how well they do and it was this variability that we were interested in," Latzman said.

All chimpanzees received DTI (diffusion tensor imaging) brain scans during their annual physical examination. Data were acquired that allowed the researchers to examine white matter tracts, or bundles of neurons that connect one part of the nervous system with another, between the caudate and prefrontal cortex. The white matter connectivity between these brain structures was compared to the chimpanzees' delay of gratification abilities.

###

The research team also included Dr. Jared Taglialatela of Kennesaw State.

The study is supported by the National Institutes of Health.

Media Contact

LaTina Emerson
lemerson1@gsu.edu
404-413-1353

 @GSU_News

http://www.gsu.edu 

LaTina Emerson | EurekAlert!

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>