Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links delay of gratification to how brain structures are connected

05.06.2015

The ability to delay gratification in chimpanzees is linked to how specific structures of the brain are connected and communicate with each other, according to researchers at Georgia State University and Kennesaw State University.

Their findings were published June 3 in the Proceedings of the Royal Society B: Biological Sciences.

This study provides the first evidence in primates, including humans, of an association between delay of gratification performance and white matter connectivity between the caudate and the dorsal prefrontal cortex in the right hemisphere, said Dr. Robert Latzman, assistant professor in the Department of Psychology at Georgia State, who led the study with Dr. William Hopkins, professor of neuroscience at Georgia State.


Pictured are a series of 12 serial views of a chimpanzee's brain, projecting from the base of the brain, showing the white matter connectivity between the caudate and the dorsal prefrontal cortex. The scans were projected onto a standard chimpanzee template brain.

Credit: The Royal Society

The researchers found higher white matter connectivity between the caudate and dorsal prefrontal cortex in the right hemisphere of the brain was associated with the learning of delay of gratification.

Delay of gratification, the need to control emotional and behavioral impulses, is one of the earliest demands placed on individuals and is of critical importance, Latzman said.

"Delay of gratification or self-control is core to a number of different types of mental illnesses, most notably ADHD (attention deficit/hyperactivity disorder)," said Latzman. "This ability and the developmental process that occurs when children learn to delay gratification and inhibit an immediate want for a longer-term goal is a hugely important developmental milestone."

There is a considerable need for understanding connections among brain regions associated with delay of gratification abilities, such as the two regions that showed significant results in this study, Latzman said.

The task used to measure delay of gratification in chimpanzees in this study is a parallel task to that used in a series of famous experiments conducted by psychologist Walter Mischel at Stanford University in the 1960s and 1970s. Preschoolers were placed alone in a room furnished with a small desk and on the desk were two marshmallows and a bell. The researcher told the child he had to leave the room, but when he returned, the child could eat both marshmallows. If the child wanted to eat one marshmallow before the researcher returned, the child could ring the bell and eat one, but not both. When the researcher shut the door, some children ate the marshmallow right away and others tried to distract themselves, according to The New York Times.

In follow-up studies, Mischel found that delay of gratification abilities at age 4 can predict a number of behaviors into adolescence and adulthood, including planning and reasoning abilities, control of negative emotions, standardized test scores, higher educational attainment, better coping abilities, fewer interpersonal difficulties, less substance use and higher self-esteem and self-worth more than 20 years later, according to Latzman.

The current study involved 49 chimpanzees that were trained to perform a delay of gratification task. Researchers placed grapes in a transparent PVC pipe with a closed bottom and trained the chimpanzees to delay gratification in receiving the grapes. The study used chimpanzees because their self-control abilities, as compared to other model species such as monkeys, closely resemble those of human children and both their neuroanatomy and neural development are quite similar to humans. They also share a very high degree of genetic overlap, Latzman said.

"We trained them to learn that if they waited, the one grape becomes two grapes and two grapes become three grapes and three grapes become four grapes and so on. There's variability in how well they do and it was this variability that we were interested in," Latzman said.

All chimpanzees received DTI (diffusion tensor imaging) brain scans during their annual physical examination. Data were acquired that allowed the researchers to examine white matter tracts, or bundles of neurons that connect one part of the nervous system with another, between the caudate and prefrontal cortex. The white matter connectivity between these brain structures was compared to the chimpanzees' delay of gratification abilities.

###

The research team also included Dr. Jared Taglialatela of Kennesaw State.

The study is supported by the National Institutes of Health.

Media Contact

LaTina Emerson
lemerson1@gsu.edu
404-413-1353

 @GSU_News

http://www.gsu.edu 

LaTina Emerson | EurekAlert!

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>