Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links autistic behaviors to enzyme

24.07.2014

UC Riverside-led mouse study shows that deleting the enzyme favorably impacts behaviors associated with Fragile X syndrome

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common inherited cause of mental impairment and the most common cause of autism.


Iryna Ethell is a professor of biomedical sciences in the UC Riverside School of Medicine.

Credit: L. Duka.

Now biomedical scientists at the University of California, Riverside have published a study that sheds light on the cause of autistic behaviors in FXS. Appearing online today (July 23) in the Journal of Neuroscience, and highlighted also on the cover in this week's print issue of the journal, the study describes how MMP-9, an enzyme, plays a critical role in the development of autistic behaviors and synapse irregularities, with potential implications for other autistic spectrum disorders.

MMP-9 is produced by brain cells. Inactive, it is secreted into the spaces between cells of the brain, where it awaits activation. Normal brains have quite a bit of inactive MMP-9, and the activation of small amounts has significant effects on the connections between neurons, called synapses. Too much MMP-9 activity causes synapses in the brain to become unstable, leading to functional deficits.

"Our study targets MMP-9 as a potential therapeutic target in Fragile X and shows that genetic deletion of MMP-9 favorably impacts key aspects of FXS-associated anatomical alterations and behaviors in a mouse model of Fragile X," said Iryna Ethell, a professor of biomedical sciences in the UC Riverside School of Medicine, who co-led the study. "We found that too much MMP-9 activity causes synapses to become unstable, which leads to functional deficits that depend on where in the brain that occurs."

Ethell explained that mutations in FMR1, a gene, have been known for more than a decade to cause FXS, but until now it has been unclear how these mutations cause unstable synapses and characteristic physical features of this disorder. The new findings expand on earlier work by the research group that showed that an MMP-9 inhibitor, minocycline, can reduce behavioral aspects of FXS, which then led to its use to treat FXS.

To further establish a causative role for MMP-9 in the development of FXS-associated features, including autistic behaviors, the authors generated mice that were missing both FMR1 and MMP-9. They found that while mice with a single FMR1 mutation showed autistic behaviors and macroorchidism (abnormally large testes), mice that also lacked MMP-9 showed no autistic behaviors.

"Our work points directly to MMP-9 over-activation as a cause for synaptic irregularities in FXS, with potential implications for other autistic spectrum disorders and perhaps Alzheimer's disease," said Doug Ethell, the head of Molecular Neurobiology at the Western University of Health Sciences, Pomona, Calif., and a coauthor on the study.

The research paper represents many years of bench work and effort by a dedicated team led by the Ethells. The work was primarily done in mice, but human tissue samples were also analyzed, with findings found to be consistent. Specifically, the work involved assessing behaviors, biochemistry, activity and anatomy of synaptic connections in the brain of a mouse model of FXS, as well as the creation of a new mouse line that lacked both the FXS gene and MMP-9.

FXS affects both males and females, with females often having milder symptoms than males. It is estimated that about 1 in 5,000 males are born with the disorder.

The Ethells were joined in the study by UCR's Harpreet Sidhu (first author of the research paper), Lorraine E. Dansie, and Peter Hickmott. Sidhu and Dansie are neuroscience graduate students; Hickmott is an associate professor of psychology.

Next, the researchers plan to understand how MMP-9 regulates synapse stability inside the neurons. They also plan to find drugs that specifically target MMP-9 without side effects such as new tetracycline derivatives that are potent inhibitors of MMP-9 but lack antibiotic properties.

"Although minocycline was successfully used in clinical trial in FXS, it has some side effects associated with its antibiotic properties, such gastrointestinal irritation," Iryna Ethell said. "We, therefore, plan to test new non-antibiotic minocycline derivatives. These compounds lack antibiotic activity but still act as non-competitive inhibitors of MMP-9 similar to minocycline."

###

The research was funded by grants from the FRAXA Research Foundation, the National Institutes of Health and the California Institute for Regenerative Medicine.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | Eurek Alert!

Further reports about: FMR1 FXS activity antibiotic autistic deficits disorder enzyme spectrum synapses

More articles from Studies and Analyses:

nachricht Research investigates whether solar events could trigger birth defects on Earth
21.07.2015 | University of Kansas

nachricht Accounting for short-lived forcers in carbon budgets
15.07.2015 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>