Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study links 1 in 5 deaths in Bangladesh to arsenic in the drinking water

24.06.2010
Increased mortality is linked to chronic diseases with a 70 percent increased mortality risk among those with the highest level of exposure

Between 33 and 77 million people in Bangladesh have been exposed to arsenic in the drinking water—a catastrophe that the World Health Organization has called "the largest mass poisoning in history."

A new study published in the current issue of the medical journal The Lancet provides the most complete and detailed picture to date of the high mortality rates associated with this exposure, which began with the widespread installation of tube wells throughout the country 30 years ago—a measure intended to control water-bourne diseases.

Among the surprising findings of the study, conducted by a team of researchers at Columbia University's Mailman School of Public Health, Lamont-Doherty Earth Observatory, and the University of Chicago, and led by Dr. Joseph Graziano are these:

One in five deaths in Bangladesh (population: 125 million) is associated with exposure to water from wells with arsenic concentrations greater than 10 micrograms per liter.

Arsenic exposure was associated with increased mortality due to heart disease and other chronic diseases in addition to the more familiar medical consequences of arsenic exposure: skin lesions, cancers of the skin, bladder and lung.

An increase of nearly 70 percent in all-cause mortality was found among those exposed to the highest concentration of arsenic in water (150 to 864 micrograms/liter). But researchers found a dose-related effect that included increased mortaility even at relatively low levels of exposure, including the Bangladesh safety standard (50 micrograms/liter) and the WHO recommended standard (10 micrograms/liter).

The study draws its results from a carefully designed, prospective, longitudinal study involving 12,000 people in Bangladesh who were tracked for over a decade. To gather data for the Health Efects of Arsenic Longtudinal Study (HEALS), researchers traversed the tropical landscape over wooden bridges to interview each of the 12,000 participants and take urine samples every two years. Lifestyle and health data were tracked, allowing researchers to control for factors such as smoking, blood pressure and body-mass index. In addition, nearly 6,000 wells were tested to establish the arsenic concentration of the water source for each participant.

In an accompanying commentary in the same issue of The Lancet, Margaret P. Karagas of Dartmouth Medical School, describes the study design as "a substantial advance over previous ecological studies."

The mass poisoning in Bangladesh was a result of well-intentioned efforts on the part of aid and development agencies in the 1970s, which built 10 million tube wells in an attempt to reduce water-bourne diseases such as cholera and dysentery, according to Dr. Graziano, professor of Environmental Health Sciences at the Mailman School. While the new wells reduced exposure to the microbes causing such diseases, they yielded water contamined with arsenic, which occurs naturally in the region. Arsenic can be avoided, however, by digging deeper wells—an approach that is already yielding safer drinking water for roughly 100,000 people. The Columbia Mailman School team has been at the forefront of this effort.

"The need for a global response is apparent because the situation goes far beyond the Bangladesh borders," says Dr. Graziano. "Arsenic in ground water is affecting 140 million people across many countries and especially in South Asia. "There needs to be a concerted effort to bring safe to millions of people. Investment has not been commensurate with the magnitude of the problem."

The research is supported by the National Institutes of Health. In addition to senior author Dr. Joseph Graziano, Dr. Habibul Ahsan, of the University of Chicago and professor of Epidemiology at the Mailman School, was first author.

About the Mailman School of Public Health

The only accredited school of public health in New York City and among the first in the nation, Columbia University's Mailman School of Public Health pursues an agenda of research, education, and service to address the critical and complex public health issues affecting millions of people locally and globally. The Mailman School is the recipient of some of the largest government and private grants in Columbia University's history. Its more than 1000 graduate students pursue master's and doctoral degrees, and the School's 300 multi-disciplinary faculty members work in more than 100 countries around the world, addressing such issues as infectious and chronic diseases, health promotion and disease prevention, environmental health, maternal and child health, health over the life course, health policy, and public health preparedness. www.mailman.columbia.edu

Stephanie Berger | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>