Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study on land plant fossils shows Paleoasian Ocean disappeared about 251 million years ago

09.12.2009
The collision between the Siberian Plate and North China Plate was a significant geological event in earth history, which led to the final closure of the Paleoasian Ocean and the formation of the Eurasian continent.

Despite numerous research efforts in recent decades, the precise time of this event has remained a puzzle until now. New evidence in helping settle this issue is provided by Prof. Deng Shenghui and his colleagues in their paper newly published in Science in China (2009, vol.52).

Geological studies have demonstrated that during the early Paleozoic, an interval from 450-300 million year ago, the Siberian paleo-land was thousands kilometers away from the North China paleo-land, which is very different from their present situation. An immense ocean of thousands kilometers wide, namely the Paleoasian Ocean, separated these two paleo-lands. During the Carboniferous and Early Permian (about 360-270 million year ago), the North China paleo-land was located near the equator, where subtropic-tropic type of flora grew, named as "the Cathaysia Flora". In contrast, the Siberian paleo-land was located at high latitude, where temperate flora was distributed, known as "the Angara Flora". These two types of floras are very distinctive and do not mix with each other because of the geological barrier and their separate niches in different climatic zones.

Prof. Deng and his collaborators concluded that the time of the Paleoasian Ocean's disappearance is the end of the Permian, about 251 million years ago, based on their study of land plant fossils. Several years ago, Deng and his research group found many plant fossils from the rocks that were formed in the Late Permian during their stratigraphical and paleontological investigation in Heilongjiang, Northeast China. These fossils could be divided into two types after detailed identifications. One belongs to Angara Flora and the other to Cathaysia Flora. So, these plant fossils represent a mixed flora. The mixed flora implies that the Angara type plants lived together with some Cathaysia type plants at this location in the Late Permian. This means that the Paleoasian Ocean, once a barrier of plant immigration, must have disappeared in the Late Permian, and those plants grew previously in North China paleo-land now immigrated to the Siberian paleo-land. Therefore, Deng and his colleagues suggested that the Paleoasian Ocean finally closed at the end of the Late Permian, about 251 million years ago.

Prof. Deng is a paleontologist in the Research Institute of Petroleum Exploration and Development, PetroChina, which is the largest national oil corporation in China. In order to explore more oil and gas resources, many basic geological problems should be solved first, such as the forming age of the oil and gas-bearing rocks, the paleogeography, paleoclimate, and paleoecology etc. Fossils, fossilized bodies and traces of ancient animals and plants, play an extremely important role in study of these basic geological problems. Prof. Deng and his paleontological group focus on the researches of various fossils.

The study was supported first by the Key Research Project of PetroChina and then by the National Program on Key Basic Research Project (Grant No: 2006CB701400).

Reference: Deng S H, Wan C B, Yang J G. 2009. Discovery of a Late Permian Angara-Cathaysia mixed flora from Acheng of Heilongjiang, China, with discussions on the closure of the Paleoasian Ocean. Science in China, Series DFEarth Science, vol. 52, no.11: 1746-1755.

Shenghui Deng | EurekAlert!
Further information:
http://zh.scichina.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>