Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study on land plant fossils shows Paleoasian Ocean disappeared about 251 million years ago

The collision between the Siberian Plate and North China Plate was a significant geological event in earth history, which led to the final closure of the Paleoasian Ocean and the formation of the Eurasian continent.

Despite numerous research efforts in recent decades, the precise time of this event has remained a puzzle until now. New evidence in helping settle this issue is provided by Prof. Deng Shenghui and his colleagues in their paper newly published in Science in China (2009, vol.52).

Geological studies have demonstrated that during the early Paleozoic, an interval from 450-300 million year ago, the Siberian paleo-land was thousands kilometers away from the North China paleo-land, which is very different from their present situation. An immense ocean of thousands kilometers wide, namely the Paleoasian Ocean, separated these two paleo-lands. During the Carboniferous and Early Permian (about 360-270 million year ago), the North China paleo-land was located near the equator, where subtropic-tropic type of flora grew, named as "the Cathaysia Flora". In contrast, the Siberian paleo-land was located at high latitude, where temperate flora was distributed, known as "the Angara Flora". These two types of floras are very distinctive and do not mix with each other because of the geological barrier and their separate niches in different climatic zones.

Prof. Deng and his collaborators concluded that the time of the Paleoasian Ocean's disappearance is the end of the Permian, about 251 million years ago, based on their study of land plant fossils. Several years ago, Deng and his research group found many plant fossils from the rocks that were formed in the Late Permian during their stratigraphical and paleontological investigation in Heilongjiang, Northeast China. These fossils could be divided into two types after detailed identifications. One belongs to Angara Flora and the other to Cathaysia Flora. So, these plant fossils represent a mixed flora. The mixed flora implies that the Angara type plants lived together with some Cathaysia type plants at this location in the Late Permian. This means that the Paleoasian Ocean, once a barrier of plant immigration, must have disappeared in the Late Permian, and those plants grew previously in North China paleo-land now immigrated to the Siberian paleo-land. Therefore, Deng and his colleagues suggested that the Paleoasian Ocean finally closed at the end of the Late Permian, about 251 million years ago.

Prof. Deng is a paleontologist in the Research Institute of Petroleum Exploration and Development, PetroChina, which is the largest national oil corporation in China. In order to explore more oil and gas resources, many basic geological problems should be solved first, such as the forming age of the oil and gas-bearing rocks, the paleogeography, paleoclimate, and paleoecology etc. Fossils, fossilized bodies and traces of ancient animals and plants, play an extremely important role in study of these basic geological problems. Prof. Deng and his paleontological group focus on the researches of various fossils.

The study was supported first by the Key Research Project of PetroChina and then by the National Program on Key Basic Research Project (Grant No: 2006CB701400).

Reference: Deng S H, Wan C B, Yang J G. 2009. Discovery of a Late Permian Angara-Cathaysia mixed flora from Acheng of Heilongjiang, China, with discussions on the closure of the Paleoasian Ocean. Science in China, Series DFEarth Science, vol. 52, no.11: 1746-1755.

Shenghui Deng | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>