Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study provides new insights into structure of heart muscle fibers

Discovery could be used to help engineer artificial tissue

A study led by researchers from McGill University provides new insights into the structure of muscle tissue in the heart – a finding that promises to contribute to the study of heart diseases and to the engineering of artificial heart tissue.

The research, published in the Proceedings of the National Academy of Sciences (PNAS), reveals that the muscle fibers in the heart wall are locally arranged in a special "minimal surface," the generalized helicoid. The results add a significant new dimension to our understanding of the structure and function of heart-wall muscle fiber since minimal surfaces arise in nature as optimal solutions to physical problems. (A more familiar example of a minimal surface is the film that forms when a wireframe is dipped in a solution of soap.)

Surgeons and anatomists have been examining the geometry of muscle fibers in the heart for decades, and have long known that muscle cells are aligned to form helices that wind around the ventricles. But these analyses have been confined largely to the level of individual fibers. Partly because of the limitations of traditional histology techniques, little work has been done on the more-complex geometry of groups of fibers.

Working with collaborators at Eindhoven University of Technology in the Netherlands, and Yale University in the U.S., the McGill-led team used a combination of Diffusion Magnetic Resonance Imaging (dMRI) and computer modeling to reveal the way that bundles of fibers bend together. The researchers examined images of the heart tissue of rats, humans and dogs – and found the same pattern.

"You can think of it as analyzing a clump of hair instead of an individual hair strand," explains Professor Kaleem Siddiqi of McGill's School of Computer Science. "We've discovered that the clump bends and twists in the form of a particular minimal surface, the generalized helicoid – and this is true across species. It's not particular to just one mammal. The implications of these findings are broad."

The knowledge could be used, for example, to provide a scaffold to guide the repair of heart-wall damage caused by heart attacks. While regeneration of muscle tissue is a major area in bioengineering, most developments in this field have involved skeletal muscle tissue – such as that in arms and legs – which is arranged in a different, more linear structure.

The first author of the study is Dr. Peter Savadjiev of Harvard Medical School, whose research on this problem began while he was a doctoral student of Prof. Siddiqi's at McGill. Other co-authors of the paper are Gustav J. Strijkers and Adrianus J. Bakermans of Eindhoven University, Emmanuel Piuze of McGill, and Steven W. Zucker of Yale University.

The research was supported with funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de recherche du Québec - Nature et technologies (FQRNT), the National Science Foundation (NSF), the Dutch Technology Foundation, and the Netherlands Organization for Scientific Research (NWO).

Chris Chipello | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>