Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides insight into pancreatic cancer progression, new target for treatment

12.06.2012
Mystery of how pancreatic cancer escapes immune detection is unraveled, offering hope for treatment

Researchers at NYU School of Medicine have made a key discovery that could help doctors treat one of the deadliest cancers.

A new study reveals a strategy used by pancreatic cancer cells to tinker with the immune system in a way that enables them to escape destruction by specialized immune cells.

The study, funded by the National Institutes of Health, The Pancreatic Cancer Action Network and by The Irvington Institute Postdoctoral Fellowship Program of the Cancer Research Institute, appears in the June 12 issue of Cancer Cell.

Pancreatic cancer is known for its aggressive nature. Only four percent of patients survive past five years from the time of diagnosis, and currently available therapies are largely ineffective.

"It is extremely important that we learn how the advancement of pancreatic cancer is being regulated in an effort to interrupt the progression of the disease," said senior author Dafna Bar-Sagi, PhD, senior vice president and vice dean for Science and chief scientific officer at NYU School of Medicine.

Using mouse models of pancreatic cancer, Dr. Bar-Sagi and colleagues found that a mutation of the KRAS gene, present in 95 percent of all pancreatic cancers, triggers the expression of a protein called GM-CSF. The tumor-derived GM-CSF then directs accumulation of myeloid-derived suppressor cells in the area surrounding the tumor. These cells suppress the body's natural immune defense reaction to growing tumor cells. In this way, pancreatic cancer cells escape being seen by the body's immune system and are free to grow and divide. Establishment of an immunosuppressive environment around pancreatic cancer cells, therefore, prevents their prompt rejection by the immune system.

By blocking production of GM-CSF in pancreatic cancer cells, the researchers found that they were able to disrupt accumulation of myeloid-derived suppressor cells, liberating the tumor-killing immune response. "Our study suggests a therapeutic strategy for harnessing the anti-tumor potential of the immune system," Dr. Bar-Sagi explained.

"Our findings should be applicable to a significant proportion of human pancreatic cancer cases, as the vast majority of human pancreatic cancer samples that we tested express the GM-CSF protein prominently," Dr. Bar-Sagi added. The researchers are hopeful that their findings will open new doors in therapeutic research, eventually leading to new drug therapies that block the production or function of the GM-CSF protein to allow anti-tumor immune cells to attack the cancer cells and halt tumor development.

Although the study focuses on pancreatic cancer, KRAS mutations are prevalent in a number of other cancers, including colon and lung cancer. "From a research standpoint, the contribution of KRAS mutation to the production of GM-CSF is a very exciting find, as it may have important implications for the therapeutic management of other cancers, as well," Dr. Bar-Sagi said.

Co-authors on the study include first author Yuliya Pylayeva-Gupta, PhD, Kyoung Eun Lee, PhD, Cristina H. Hajdu, MD, and George Miller, MD, all of NYU School of Medicine.

About NYU School of Medicine:

NYU School of Medicine is one of the nation's preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation's finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City's diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

Jessica Guenzel | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>