Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides insight into pancreatic cancer progression, new target for treatment

12.06.2012
Mystery of how pancreatic cancer escapes immune detection is unraveled, offering hope for treatment

Researchers at NYU School of Medicine have made a key discovery that could help doctors treat one of the deadliest cancers.

A new study reveals a strategy used by pancreatic cancer cells to tinker with the immune system in a way that enables them to escape destruction by specialized immune cells.

The study, funded by the National Institutes of Health, The Pancreatic Cancer Action Network and by The Irvington Institute Postdoctoral Fellowship Program of the Cancer Research Institute, appears in the June 12 issue of Cancer Cell.

Pancreatic cancer is known for its aggressive nature. Only four percent of patients survive past five years from the time of diagnosis, and currently available therapies are largely ineffective.

"It is extremely important that we learn how the advancement of pancreatic cancer is being regulated in an effort to interrupt the progression of the disease," said senior author Dafna Bar-Sagi, PhD, senior vice president and vice dean for Science and chief scientific officer at NYU School of Medicine.

Using mouse models of pancreatic cancer, Dr. Bar-Sagi and colleagues found that a mutation of the KRAS gene, present in 95 percent of all pancreatic cancers, triggers the expression of a protein called GM-CSF. The tumor-derived GM-CSF then directs accumulation of myeloid-derived suppressor cells in the area surrounding the tumor. These cells suppress the body's natural immune defense reaction to growing tumor cells. In this way, pancreatic cancer cells escape being seen by the body's immune system and are free to grow and divide. Establishment of an immunosuppressive environment around pancreatic cancer cells, therefore, prevents their prompt rejection by the immune system.

By blocking production of GM-CSF in pancreatic cancer cells, the researchers found that they were able to disrupt accumulation of myeloid-derived suppressor cells, liberating the tumor-killing immune response. "Our study suggests a therapeutic strategy for harnessing the anti-tumor potential of the immune system," Dr. Bar-Sagi explained.

"Our findings should be applicable to a significant proportion of human pancreatic cancer cases, as the vast majority of human pancreatic cancer samples that we tested express the GM-CSF protein prominently," Dr. Bar-Sagi added. The researchers are hopeful that their findings will open new doors in therapeutic research, eventually leading to new drug therapies that block the production or function of the GM-CSF protein to allow anti-tumor immune cells to attack the cancer cells and halt tumor development.

Although the study focuses on pancreatic cancer, KRAS mutations are prevalent in a number of other cancers, including colon and lung cancer. "From a research standpoint, the contribution of KRAS mutation to the production of GM-CSF is a very exciting find, as it may have important implications for the therapeutic management of other cancers, as well," Dr. Bar-Sagi said.

Co-authors on the study include first author Yuliya Pylayeva-Gupta, PhD, Kyoung Eun Lee, PhD, Cristina H. Hajdu, MD, and George Miller, MD, all of NYU School of Medicine.

About NYU School of Medicine:

NYU School of Medicine is one of the nation's preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation's finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City's diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

Jessica Guenzel | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>