Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides insight into pancreatic cancer progression, new target for treatment

12.06.2012
Mystery of how pancreatic cancer escapes immune detection is unraveled, offering hope for treatment

Researchers at NYU School of Medicine have made a key discovery that could help doctors treat one of the deadliest cancers.

A new study reveals a strategy used by pancreatic cancer cells to tinker with the immune system in a way that enables them to escape destruction by specialized immune cells.

The study, funded by the National Institutes of Health, The Pancreatic Cancer Action Network and by The Irvington Institute Postdoctoral Fellowship Program of the Cancer Research Institute, appears in the June 12 issue of Cancer Cell.

Pancreatic cancer is known for its aggressive nature. Only four percent of patients survive past five years from the time of diagnosis, and currently available therapies are largely ineffective.

"It is extremely important that we learn how the advancement of pancreatic cancer is being regulated in an effort to interrupt the progression of the disease," said senior author Dafna Bar-Sagi, PhD, senior vice president and vice dean for Science and chief scientific officer at NYU School of Medicine.

Using mouse models of pancreatic cancer, Dr. Bar-Sagi and colleagues found that a mutation of the KRAS gene, present in 95 percent of all pancreatic cancers, triggers the expression of a protein called GM-CSF. The tumor-derived GM-CSF then directs accumulation of myeloid-derived suppressor cells in the area surrounding the tumor. These cells suppress the body's natural immune defense reaction to growing tumor cells. In this way, pancreatic cancer cells escape being seen by the body's immune system and are free to grow and divide. Establishment of an immunosuppressive environment around pancreatic cancer cells, therefore, prevents their prompt rejection by the immune system.

By blocking production of GM-CSF in pancreatic cancer cells, the researchers found that they were able to disrupt accumulation of myeloid-derived suppressor cells, liberating the tumor-killing immune response. "Our study suggests a therapeutic strategy for harnessing the anti-tumor potential of the immune system," Dr. Bar-Sagi explained.

"Our findings should be applicable to a significant proportion of human pancreatic cancer cases, as the vast majority of human pancreatic cancer samples that we tested express the GM-CSF protein prominently," Dr. Bar-Sagi added. The researchers are hopeful that their findings will open new doors in therapeutic research, eventually leading to new drug therapies that block the production or function of the GM-CSF protein to allow anti-tumor immune cells to attack the cancer cells and halt tumor development.

Although the study focuses on pancreatic cancer, KRAS mutations are prevalent in a number of other cancers, including colon and lung cancer. "From a research standpoint, the contribution of KRAS mutation to the production of GM-CSF is a very exciting find, as it may have important implications for the therapeutic management of other cancers, as well," Dr. Bar-Sagi said.

Co-authors on the study include first author Yuliya Pylayeva-Gupta, PhD, Kyoung Eun Lee, PhD, Cristina H. Hajdu, MD, and George Miller, MD, all of NYU School of Medicine.

About NYU School of Medicine:

NYU School of Medicine is one of the nation's preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation's finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City's diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

Jessica Guenzel | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>