Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Improves Understanding of Method for Creating Multi-Metal Nanoparticles

16.12.2010
A new study from researchers at North Carolina State University sheds light on how a technique that is commonly used for making single-metal nanoparticles can be extended to create nanoparticles consisting of two metals – and that have tunable properties. The study also provides insight into the optical properties of some of these nanoparticles.

Tuning the optical properties of nanoparticles is of interest for applications such as security technology, and for use in making chemical reactions more efficient – which has multiple industrial and environmental applications.

The researchers created core/shell nanoparticles with a gold core and silver shell, as well as alloy nanoparticles, which mix the gold and silver. The researchers also characterized the optical properties of these nanoparticles. “Silver and gold have unique optical properties arising from their specific interactions with the electric field of light,” says Dr. Joe Tracy, an assistant professor of materials science and engineering at NC State and co-author of a paper describing the study. “By manipulating the ratio of the metals, and whether the nanoparticles have core/shell or alloy structures, we can alter their optical properties with control.”

This diagram shows how researchers created the core/shell nanoparticles, and alloy nanoparticles, from gold and silver.

The researchers synthesized the nanoparticles using a technique called “digestive ripening.” The technique has been used to create single-metal particles for approximately a decade, but there have been limited studies of core/shell and alloy nanoparticles created using digestive ripening. However, the comprehensive nature of this study may make it more common.

“This study, along with related work by others, shows that digestive ripening is a viable method for creating multi-component metal nanoparticles. We used gold and silver, but the same principles would likely apply to other metals,” Tracy says. “Our detailed evaluation of this synthetic approach should help other researchers explore other kinds of binary metal nanoparticles.”

Digestive ripening relies on the use of ligands, which are small organic molecules with parts that bond directly to metals. The ligands are usually anchored to the metal cores of the nanoparticles and prevent the nanoparticles from clumping together, which allows them to be suspended in solution. Digestive ripening occurs when the ligands are able to transport metal atoms from the core of one nanoparticle to another – resulting in a more homogenous size distribution among the nanoparticles.

The researchers used digestive ripening to create a solution of gold nanoparticles of similar size. When they introduced silver acetate into the solution, the ligands transported silver atoms to the surfaces of the gold nanoparticles, resulting in nanoparticles with gold cores and silver shells.

Researchers then transferred the nanoparticles into a second solution, containing a different ligand. Heating this second solution to 250 degrees Celsius caused the metals to diffuse into each other – creating nanoparticles made of a gold-silver alloy.

The researchers also created gold-silver alloy nanoparticles by skipping the shell-creation step, introducing silver acetate into the second solution, and raising the temperature to 250 degrees Celsius. This “shortcut” method has the benefit of simplifying control over the gold-to-silver ratio of the alloy.

The paper, “Synthesis of Au(core)/Ag(shell) Nanoparticles and their Conversion to AuAg Alloy Nanoparticles,” was published online Dec. 13 by the journal Small. The research was funded by the National Science Foundation and NC State. The lead author of the paper is Matthew Shore, who was an undergraduate at NC State when the research was done. Co-authors include Tracy, NC State Ph.D. student Aaron Johnston-Peck, former NC State postdoc Dr. Junwei Wang, and University of North Carolina at Chapel Hill assistant professor Dr. Amy Oldenburg.

NC State’s Department of Materials Science and Engineering is part of the university’s College of Engineering.

-shipman-

Note to Editors: The study abstract follows.

“Synthesis of Au(core)/Ag(shell) Nanoparticles and their Conversion to AuAg Alloy Nanoparticles”

Authors: Matthew S. Shore, Junwei Wang, Aaron C. Johnston-Peck, Joseph B.
Tracy, North Carolina State University; Amy L. Oldenburg, University of North Carolina at Chapel Hill

Published: online Dec. 13, in Small

Abstract: Au(core)/Ag(shell) and AuAg alloy nanoparticles are synthesized with stoichiometric control through digestive ripening, a potentially general approach for synthesizing core/shell and alloy nanoparticles. AuAg alloy nanoparticles are obtained by annealing Au(core)/Ag(shell) nanoparticles. These bimetal nanoparticles have a tunable surface plasmon resonance absorbance and of interest for use in catalysis and as taggants for security applications.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu
http://news.ncsu.edu/releases/wms-tracy-auag/

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>