Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study could help improve gene therapy for heart disease, cancer

13.10.2011
Research Also May Aid Fight against Tuberculosis, Malaria

A Loyola University Chicago Stritch School of Medicine study could lead to improved gene therapies for conditions such as heart disease and cancer as well as more effective vaccines for tuberculosis, malaria and other diseases.

Senior author Christopher Wiethoff, PhD, and colleagues report their findings in the October issue of the Journal of Virology. Editors spotlighted the report as one of the “articles of significant interest.” Journal of Virology is the leading journal of the study of viruses.

The study involved a virus that causes the common cold, called adenovirus. Scientists have been trying to use a version of this virus as a delivery vehicle for gene therapies and vaccines. (The virus is not able to reproduce and cause disease.) Administering this virus to patients causes an inflammatory reaction, which can be a double-edged sword: The reaction aids in the use of the virus in vaccines but limits its use for gene therapies.

In gene therapy, one or more desired genes are introduced into the adenovirus, which is then administered to the patient. Once in the body, the virus enters targeted cells and delivers the desired genes. In heart disease patients, for example, the virus delivers genes that trigger the growth of new blood vessels in damaged heart muscle. However, when the adenovirus enters a cell to deliver a desired gene, it causes an inflammatory immune response. In extreme cases, this can endanger the patient. In one highly publicized case, a University of Pennsylvania gene therapy patient named Jesse Gelsinger died from a massive immune response triggered by the use of the adenovirus.

In vaccines, the adenovirus delivers one or more genes. These genes instruct cells to produce a specific protein, which is normally part of the targeted pathogen. This protein, in turn, jump-starts the patient’s immune system to attack a specific pathogen, such as the bacterium that causes tuberculosis or the parasite that causes malaria. Here, the inflammatory immune response has the beneficial effect of revving up the immune system to attack germs.

The Loyola study provides new insights into how the adenovirus triggers an immune response. The study involved immune cells from humans and mice. Researchers discovered how cells sense the adenovirus as it enters a cell. This recognition, in turn, triggers the immune response. The finding could help researchers tailor the adenovirus so that it causes less of an immune response in gene therapy applications and an enhanced immune response in vaccines.

“These results will help with future studies of innate immune responses to adenovirus,” Wiethoff and colleagues wrote. “Additionally, our understanding of this process could allow us to either enhance or attenuate [weaken] the innate immune response to adenovirus to generate novel vectors for gene therapy and vaccination."

Wiethoff is an assistant professor in the Department of Microbiology and Immunology at Loyola University Chicago Stritch School of Medicine. Other authors, all in the Department of Microbiology and Immunology, are Kathleen McGuire (first author), Arlene Barlan and Tina Griffin.

Wiethoff and McGuire have received funding from the National Institutes of Health, and Wiethoff has received funding from the American Heart Association.

Jim Ritter | EurekAlert!
Further information:
http://www.lumc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>