Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study IDs new genetic links to impulsivity, alcohol problems in men

17.11.2011
Rarely researched gene plays important role in brain development, neuron functions

Being impulsive can lead us to say things we regret, buy things we really don't need, engage in behaviors that are risky and even develop troublesome addictions. But are different kinds of hastiness and rashness embedded in our DNA?

A new study suggests the answer is yes -- especially if you're a man.

The research, led by University of Nebraska-Lincoln assistant professor of psychology Scott Stoltenberg, found links between impulsivity and a rarely researched gene called NRXN3. The gene plays an important role in brain development and in how neurons function.

The newly discovered connection, which was more prevalent among men than women in the study, may help explain certain inclinations toward alcohol or drug dependence, Stoltenberg said.

"Impulsivity is an important underlying mechanism in addiction," he said. "Our finding that NRXN3 is part of the causal pathway toward addiction is an important step in identifying the underlying genetic architecture of this key personality trait."

For the study, researchers measured impulsivity levels in nearly 450 participants -- 65 percent women, 35 percent men -- via a wide range of tests. Then, they compared those results with DNA samples from each participant. They found that impulsivity was significantly higher in those who regularly used tobacco or who had alcohol or drug problems.

The results, interestingly, also came down along gender lines. In men, two connections clearly emerged; first, between a particular form of the NRXN3 gene and attentional impulsivity, and second, between another NRXN3 variant and alcohol problems. The connections for women, meanwhile, were much weaker.

Stoltenberg said the gender-specific results are a rich area for further study.

"We can't really say what causes these patterns of association to be different in men and women. But our findings will be critical as we continue to improve our understanding of the pathways from specific genes to health-risk behaviors," he said.

The researchers were interested in impulsivity because the trait can predispose people to any number of behavioral problems -- addictions, behavior control, failing to plan ahead or think through consequences of actions -- and settled on the role of NXRN3 from previous, recent studies.

While the results add important new evidence to the genetic role in impulsivity and, in turn, its role in substance abuse, researchers were careful to not claim a perfect cause-and-effect relationship. Impulsivity may interact with sensitivity to alcohol, for one example, or anxiety, for another, to create complex pathways to substance use problems in both men and women.

"If you're working to explain how genes are associated with something like (substance) dependence, you have to connect a lot of dots," Stoltenberg said. "There's a big gap between genes and a substance use disorder. Impulsivity is one factor to such problems -- not the only factor."

The study, which appears in the journal Drug and Alcohol Dependence, was authored by UNL's Stoltenberg; Melissa Lehmann of Black Hills State (S.D.) University; Christa C. Christ of UNL; and Samantha Hersrud and Gareth Davies of the University of South Dakota School of Medicine.

Scott Stoltenberg | EurekAlert!
Further information:
http://www.unl.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>