Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study identifies possible cause of salt-induced hypertension

15.04.2011
Salt intake affects body's ability to simultaneously regulate blood pressure and temperature

New research from Case Western Reserve University School of Medicine and Kent State University shows that salt intake raises blood pressure because it makes it harder for the cardiovascular system to simultaneously juggle the regulation of blood pressure and body temperature.

For decades, medical researchers have sought to understand how salt causes salt-induced high blood pressure to no avail. Some individuals, described as "salt sensitive," experience an increase in blood pressure following the ingestion of salt, whereas others, termed "salt resistant," do not. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. This inability to explain why salt raises blood pressure in some individuals but not others has hampered the development of a comprehensive theory as to what causes most cases of high blood pressure.

Since the cardiovascular system is responsible for maintaining normal blood pressure and also helps control body temperature by conducting heat from the muscles and internal organs to the skin's surface, a team of researchers led by Robert P. Blankfield, MD, MS, clinical professor of family medicine at Case Western Reserve University School of Medicine, and a member of the Department of Family Medicine at University Hospitals Case Medical Center and Ellen L. Glickman, PhD, professor of exercise science at Kent State University, tested whether these dual roles of the cardiovascular system might help explain how salt ingestion leads to salt-sensitive hypertension.

The researchers examined the effect of salt and water consumption versus just water upon a group of 22 healthy men without high blood pressure. The study participants' blood pressure, rectal temperature, cardiac index (the volume of blood pumped by the heart per minute), and urine output were monitored at one, two, and three hours after the men ingested either salt and water or water alone. Changes in rectal temperature were compared between the men identified as salt sensitive versus those who were salt resistant.

The study found that the ingestion of salt and water lowered body temperature more than the ingestion of water by itself. In addition, body temperature decreased more in individuals who are salt resistant than in individuals who are salt sensitive.

"It appears that salt sensitive individuals maintain core body temperature equilibrium more effectively than salt resistant individuals, but experience increased blood pressure in the process," Dr. Blankfield says. "Conversely, salt resistant individuals maintain blood pressure equilibrium more effectively than salt sensitive individuals following salt and water intake, but experience a greater temperature reduction in the process."

Matthew D. Muller, PhD, postdoctoral research fellow at the Penn State College of Medicine, and the paper's first author explains, "If our results are generalizable, it would be possible to account for the role of salt in the development of salt-sensitive hypertension: salt and water loading raises blood pressure in salt sensitive individuals, and the elevated blood pressure persists for a finite period of time during and after the salt and water intake. These transient blood pressure elevations, whether brief or prolonged, might initiate the complex changes within the walls of the arteries and arterioles that characterize individuals with essential hypertension."

Dr. Muller adds, "Nowadays, physicians tell their patients that no one knows what causes high blood pressure. Since we can now explain why salt-sensitive hypertension develops, a theory that will explain all hypertension may be possible. Thus, physicians may one day be able to tell their patients that the cause of high blood pressure is understood, and physicians may also be able to explain to their patients what must be done to avoid developing this chronic medical condition." Dr. Muller conducted this research as a doctoral student at Kent State University.

The findings are described in a manuscript published in the April 14th issue of the journal Hypertension Research.

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Nine Nobel Laureates have been affiliated with the school of medicine.

Annually, the School of Medicine trains more than 800 MD and MD/PhD students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002. http://casemed.case.edu.

About Kent State University

Founded in 1910, Kent State University is the second largest public university in Ohio. Its eight-campus system, among the largest regional systems in the country, serves both the development of a true living/learning approach at the Kent Campus and the regional needs on seven other campuses throughout Northeast Ohio.

Kent State's College of Education, Health, and Human Services creates and advances knowledge as it educates professionals who enhance health and well-being and enable learning across the lifespan. Our graduates go on to serve as leaders in wide variety of fields, ranging from education, counseling, and health care to hospitality, recreation, and sport. While our students and alumni appear to have diverse interests, they all have one thing in common - they have committed their lives to serving others and to making the world a better place.

Visit us at www.kent.edu/ehhs

Jessica Studeny | EurekAlert!
Further information:
http://www.case.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>